AN13761 PSI5 programming mode procedures for FXLS9xxxx sensors Rev. 1.1 – 29 November 2023

Application note

Document information

Information	Content
Keywords	FXLS93xxx, FXLS93xx0, OTP, one time programmable memory, sensor, single channel, dual- channel, inertial sensor, PSI5.
Abstract	AN13761 describes procedures to perform one time programmable (OTP) memory of the FXLS93xxx single and dual- channel inertial sensor using the PSI5 programming mode.

1 Introduction

This document describes the recommended procedures to program the One Time Programmable (OTP) memory of the FXLS93xxx single and dual-channel inertial sensors using PSI5 programming mode. It describes the recommended procedures for initializing and configuring FXLS93xxx devices on a PSI5 bus transmission using PSI5 programming mode.

2 Applicable parts

This document applies to the NXP sensors listed in Table 1.

 Table 1. Applicable parts

Part	Description
FXLS93xxx	Dual-channel PSI5 Inertial Sensor
FXLS93xx0	Single-channel PSI5 Inertial Sensor

3 Application schematic and device connections

The procedures outlined in this document assume that one sensor is connected to a PSI5 controller. The PSI5 controller provides both power and communication via the BUS_I and BUSRTN pins through the recommended PSI5 network shown in Figure 1 and Table 2.

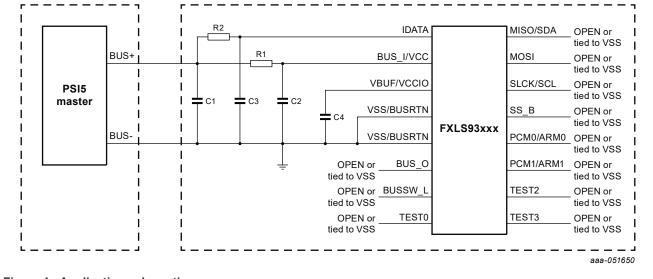


Figure 1. Application schematic

.

Table 2. PSI	able 2. PSIS OTP Programming of a PSIS application device										
	Recommended Components										
Ref. Designator	Туре	Description	Purpose								
C1	Ceramic	2.2 nF, 10 %, 50 V minimum, X7R	V _{CC} power supply decoupling and signal damping								
C2	Ceramic	15 nF, 10 %, 50 V minimum, X7R	V _{CC} power supply decoupling								

of a DOLE and listing device

	Recommended Components										
Ref. Designator	Туре	Description	Purpose								
C3	Ceramic	470 pF, 10 %, 50 V minimum, X7R	I _{DATA} power supply decoupling								
C4	Ceramic	0.47 µF, 10 %, 10 V minimum, X7R	Buffer regulator output capacitor for micro-cut immunity								
R1	General Purpose	82 Ω, 5 %, 200 PPM	V _{CC} filtering and signal damping								
R1	General Purpose	27 Ω, 5 %, 200 PPM	I _{DATA} filtering and signal damping								

Table 2. PSI5 OTP Programming of a PSI5 application device...continued

4 Device power restrictions

Power must be applied to the FXLS93xxx with the ramp rates specified in the data sheet. The supply voltage for the device is applied through the PSI5 network shown in <u>Figure 1</u>. As specified in the data sheet, the voltage at the IDATA pin during OTP memory programming must be between 9 V and 11 V. The source must be able to supply the full current draw of the bus plus an additional 5 mA without dipping below 9 V. The applied voltage must consider the voltage drop across the PSI5 network resistor, R1 as shown in the equations below:

$$\begin{split} VSUP_{MIN} &\geq BUS_I_{VPPMIN} + I_{VPP} \times R2_{MAX} \\ VSUP_{MIN} &\geq 9 \ V + (9 \ mA + 5 \ mA) \times 72 \ \Omega = 10.3 \ V \\ VSUP_{MAX} &\leq BUS_I_{VPPMAX} + I_{VPP} \times R1_{MIN} \\ VSUP_{MAX} &\leq 11 \ V + (4 \ mA) \times 92 \ \Omega = 11.3 \ V \end{split}$$

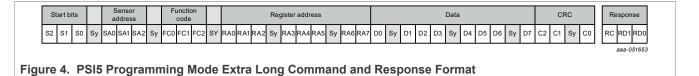
The example in this document uses a supply voltage of 11.0 V with a current limit of 125 mA. The supply ramp is shown in <u>Figure 2</u>.

Figure 2. Programming Voltage Supply Ramp

5 Bidirectional communication via PSI5 programming mode

The following sections describe PSI5 Programming Mode and its use to configure, program, and test an FXLS93xxx device. All communication in PSI5 Programming Mode uses the following settings and timing.

Parameter	Value						
Sync pulse rate	4 kHz (250 μs)						
Response time slot	Time Slot 1: 46 µs						
Response data size	10-bit						
Response error checking	Even parity						
Response bit rate	125 kbit/s (8 μs)						


All PSI5 Programming Mode Commands use either the Short or Extra Long format and must include sync bits (logic 1) every fourth bit as shown in <u>Figure 3</u> and <u>Figure 4</u>.

S	tart bi	its		-	Sensc ddres	-			Function code		C		CRC		Response	
S2	S1	S0	Sy	SA0	SA1	SA2	Sy	FC0	FC1	FC2	SY	C2	C1	C0	RC	RD1

aaa-051652

Figure 3. PSI5 Programming Mode Short Command and Response Format

4 / 27

5.1 Power on PSI5 programming mode communication delay

A PSI5 programmed device will decode Programming Mode Entry commands from 6 ms to 133 ms after power is applied to the sensor. The PSI5 controller must provide at least 6 ms prior to sending the PSI5 Programming Mode Entry Start Condition as shown in Figure 5.

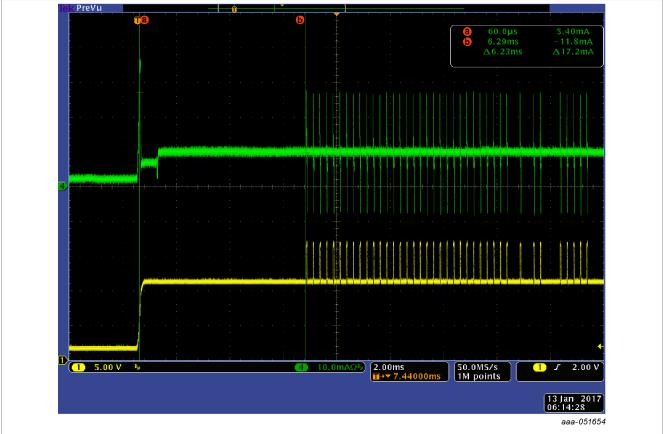


Figure 5. Power On PSI5 Programming Mode Communication Delay

5.2 PSI5 programming mode entry start condition

Precede the Programming Mode Entry command with a start condition consisting of 31 consecutive logic 1s (sync pulses) as shown in <u>Figure 6</u>.

Figure 6. PSI5 Programming Mode Entry Start Condition, 31 Sync Pulses

5.3 PSI5 programming mode entry command

The PSI5 Programming Mode Entry (PME) Command is a short command with the format shown in <u>Figure 3</u> and settings shown in <u>Table 4</u> and <u>Table 5</u>. Figure 7 and Figure 8 show the PSI5 PME command and response.

Table 4.	PSI5 programming	mode entry command	parameters and values
----------	------------------	--------------------	-----------------------

Parameter	Value
Command Type	Short
Start Bits (Start)	010
Sensor Address (SAdr)	001
Function Code (FC)	111
CRC (CRC)	001

Table 5. PSI5 programming mode entry settings

Start	Start Bits			Senso	or Addı	ress	Function Code			de		CRC			Respo	onse
S2	S1	S0	Sy	SA0	SA1	SA2	Sy	FC0	FC1	FC2	Sy	C2	C1	C0	RC	RD1
0	1	0	1	0	1	0	1	1	1	1	1	0	0	1	1E1	0CA

AN13761 Application note © 2023 NXP B.V. All rights reserved.

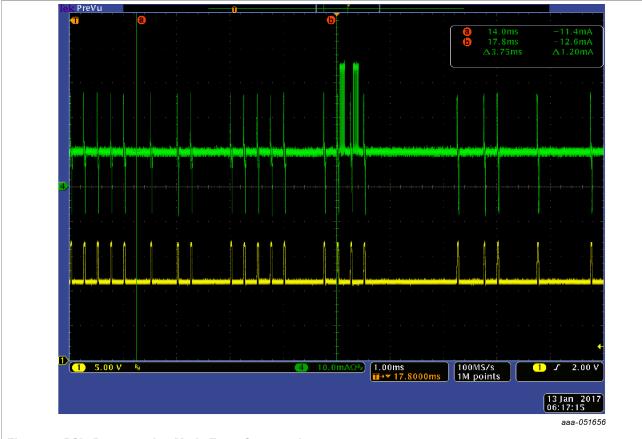


Figure 7. PSI5 Programming Mode Entry Command

Figure 8. PSI5 Programming Mode Entry Response

5.4 PSI5 programming mode normal command start condition

Once the PME is received, all PSI5 Programming Commands must be preceded using one of the following start conditions:

- A minimum of 5 consecutive logic '0's (with no sync bits)
- A minimum of 31 consecutive logic '1's (this includes logic '1's transmitted for the previous response)

Figure 9 shows an example start condition with 6 nSync bits.

Figure 9. PSI5 Programming Mode Command Start Condition, 6 nSync Bits

5.5 PSI5 programming mode normal commands and responses

All PSI5 Programming Mode commands after the PME use the Extra Long Command Format shown in <u>Figure 4</u>. Only two commands are supported: Register Read and Register Write. <u>Table 6</u> and <u>Table 7</u> show the command settings for the 2 commands. <u>Figure 10</u> and <u>Figure 11</u> show the read and write command and response formats for PSI5 programming mode.

Parameter	Value
Command Type	XLONG Read
Start Bits (Start)	010
Sensor Address (SAdr)	001
Function Code (FC)	000
CRC (CRC)	Variable

esponse	R		۶C	CF						data	ister	Reg								ess	addr	gister	Re													ts	art b	St	Sensor address Function code Fegister address Register data CRC Response
RD RD 1 2	RC	C0	Sy	C1	C2	D7	Sy	D6	D5	D4	Sy	D3	D2	D1	Sy	D0	RA 7	RA 6	Sy	RA 5	RA 4	RA 3	Sy	RA 2	RA 1	RA 0	Sy	FC 2	FC 1	FC 0	Sy	SA 2	SA 1	SA 0	Sy	S0	S1	S2	
C0 D4	1E1	1	1	1	1	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0	1	0	1	0	1	0	

Figure 10. PSI5 programming mode read register command and response format

AN13761 Application note

Parameter	Value
Command Type	XLONG Write
Start Bits (Start)	010
Sensor Address (SAdr)	001
Function Code (FC)	001
CRC (CRC)	Variable

S2 S1 S0 Sv S																				Regi	3101	Jata						0	RC			espor	30
S2 S1 S0 Sy (SA SA SA 0 1 2	Sy	FC 0	FC F	C Sy	RA 0	RA 1	RA 2	Sy	RA 3	RA 4	RA 5	Sy	RA 6	RA 7	D0	Sy	D1	D2	D3	Sy	D4	D5	D6	Sy	D7	C2	C1	Sy	C0	RC	RD 1	RD 2
0 1 0 1 0	0 1 0	1	1	0) 1	0	0	0	1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	1	0	1E1	76	12

Figure 11. PSI5 programming mode write register command and response format

Figure 12 is an example PSI5 programming mode command and response.

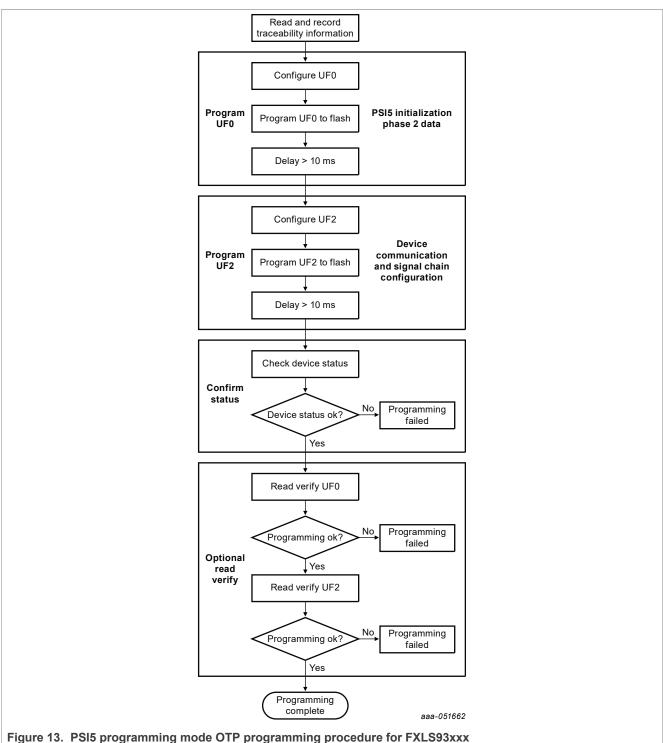


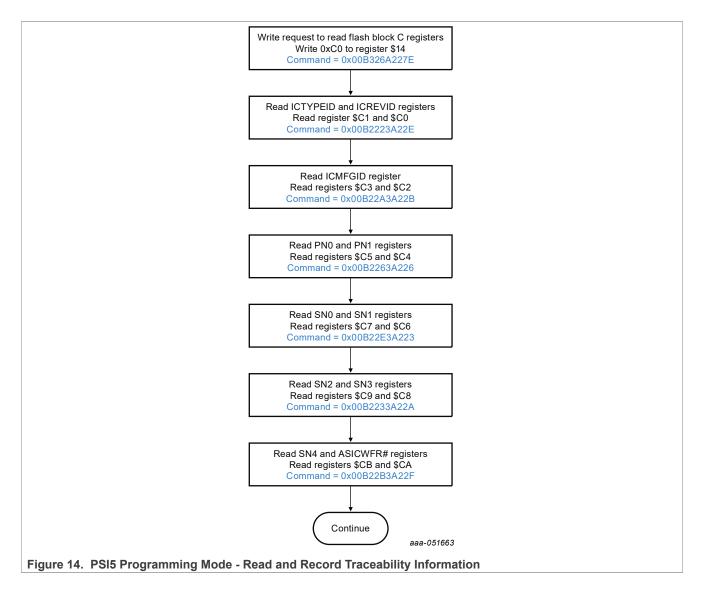
Figure 12. PSI5 programming mode command and response example

6 User OTP array programming via PSI5 programming mode

Figure 13 shows an overview of the User OTP array programming procedure. Each procedure block is covered by a separate subsection.

AN13761 Application note

Note that in the examples, some register writes to the value 0x00 are included for completeness. If a desired register value is 0x00, the write command need not be executed.


6.1 Optional read and record traceability information

Prior to programming the OTP of the device, the user can optionally read and record the device level traceability information, and confirm that the device part number is correct.

NXP Semiconductors

AN13761

PSI5 programming mode procedures for FXLS9xxxx sensors

6.2 Program UF0: PSI5 initialization phase 2 data

The UF0 block of memory includes fifteen 8-bit user programmable registers from address \$E0 to \$EE that map to the PSI5 Initialization Phase two transmission data. The data mapping to initialization phase two data fields is shown in <u>Table 8</u>.

Table 8.	UF0 register to	PSI5 initialization	phase 2 data	field mapping
			p	

L	ocation				В	lit						
Address	Register	7	6	5	4	3	2	1	0			
\$E0	USERDATA_0		Channel 1 F1:D1				Channel	0 F1:D1	1			
\$E1	USERDATA_1	1 Channel 0 F3:D5 Channel						Channel 0 F3:D5 Channel 0 F3:D4				
\$E2	USERDATA_2		Channel 0 F4:D7			Channel 0 F4:D7 Channel						
\$E3	USERDATA_3		Channel	0 F5:D8								
\$E4	USERDATA_4	Channel 0 F6:D11 Channel 0					0 F6:D10					
\$E5	USERDATA_5		Channel 0 F7:D13				Channel	0 F7:D12				
N13761	1	1	All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All				V. All rights reserv					

PSI5 programming mode procedures for FXLS9xxxx sensors

L	ocation				В	lit			
Address	Register	7	6	5	4	3	2	1	0
\$E6	USERDATA_6		Channel	0 F9:D32		Channel 0 F7:D14			
\$E7	USERDATA_7	Channe	l 0 F8:D16 =	= Channel 1	F8:D16	Channel 0 F8:D15 = Channel 1 F8:D15			F8:D15
\$E8	USERDATA_8	Channe	l 0 F8:D18 =	= Channel 1	F8:D18	Channel 0 F8:D17 = Channel 1 F8:D17			F8:D17
\$E9	USERDATA_9		Channel 1 F3:D5 Channel 1 F3:D4						
\$EA	USERDATA_A		Channel	1 F4:D7			Channel	1 F4:D6	
\$EB	USERDATA_B		Channel	1 F5:D9			Channel	1 F5:D8	
\$EC	USERDATA_C		Channel	1 F6:D11			Channel	1 F6:D10	
\$ED	USERDATA_D		Channel	1 F7:D13			Channel	1 F7:D12	
\$EE	USERDATA_E		Channel	1 F9:D32		Channel 1 F9:D14			
Facto	ory Default	0	0	0	0	0 0 0 0			0

Table 8. UF0 register to PSI5 initialization phase 2 data field mapping...continued

Figure 15 sets the PSI5 Initialization phase two data as shown in Table 9.

Table 9. Example PSI5 initialization phase 2 data

Channel	PSI5 Field ID#	PSI5 Nibble ID #	Description	Value	Register
	F1	D1	Protocol Revision 1.3	0x4	E0[3:0]
	F2	D2	Number of Data Blocks = 32	0x2	N/A
	F2	D3	Number of Data Blocks = 32	0x0	N/A
	F3	D4	0xFF Supplier Code	0xF	E1[3:0]
	F3	D5	0xFF Supplier Code	0xF	E1[7:4]
	E4	D6	High g Sensor	0x0	E2[3:0]
	F4	D7	High g Sensor	0x1	E2[7:4]
	FC	D8	120 g Sensor	0x0	E3[3:0]
0	F5	D9	120 g Sensor	0x8	E3[7:4]
0	F6	D10	Sensor Specific Information = 0x0	0x0	E4[3:0]
	FO	D11	Sensor Specific Information = 0x0	0x0	E4[7:4]
		D12	Sensor Specific Information = 0x0	0x0	E5[3:0]
	F7	D13	Sensor Specific Information = 0x0	0x0	E5[7:4]
		D14	Sensor Specific Information = 0x0	0x0	E6[3:0]
		D15	Date Code = April 22, 2016	0x2	E7[3:0]
	F8	D16	Date Code = April 22, 2016	0x0	E7[7:4]
	ГО	D17	Date Code = April 22, 2016	0x9	E8[3:0]
		D18	Date Code = April 22, 2016	0x6	E8[7:4]
	F1	D1	Protocol Revision 1.3	0x4	E0[7:4]
4	F2	D2	Number of Data Blocks = 32	0x2	N/A
1		D3	Number of Data Blocks = 32	0x0	N/A
	F3	D4	0xFF Supplier Code	0xF	E9[3:0]
13761	•	All information	provided in this document is subject to legal disclaimers.	© 2023 NXP B.	V. All rights reserved

Application note

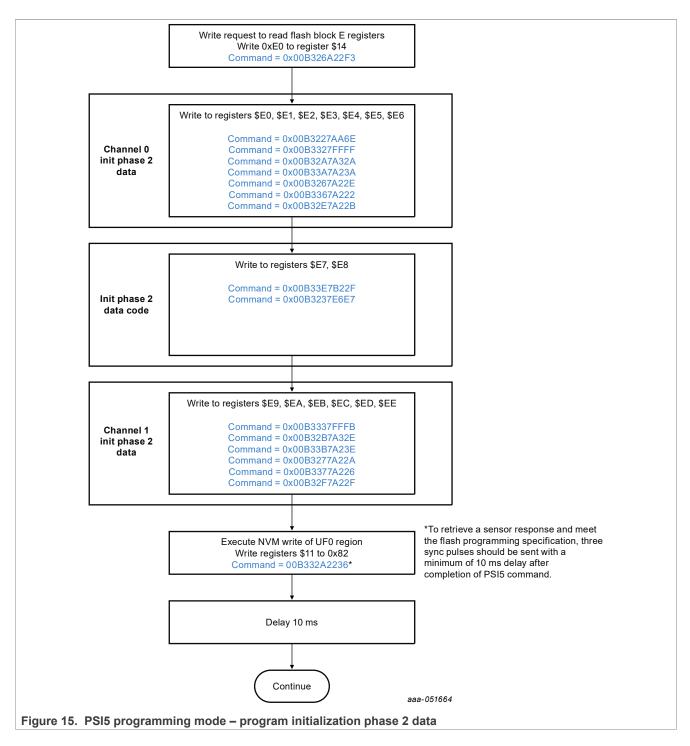

Channel	PSI5 Field ID#	PSI5 Nibble ID #	Description	Value	Register
		D5	0xFF Supplier Code	0xF	E9[7:4]
	F4	D6	High g Sensor	0x0	EA[3:0]
	F4	D7	High g Sensor	0x1	EA[7:4]
	F5	D8	120 g Sensor	0x0	EB[3:0]
	FJ	D9	120 g Sensor	0x8	EB[7:4]
	F6	D10	Sensor Specific Information = 0x0	0x0	EC[3:0]
	FO	D11	Sensor Specific Information = 0x0	0x0	EC[7:4]
		D12	Sensor Specific Information = 0x0	0x0	ED[3:0]
	F7	D13	Sensor Specific Information = 0x0	0x0	ED[7:4]
		D14	Sensor Specific Information = 0x0	0x0	EE[3:0]
		D15	Date Code = April 22, 2016	0x2	E7[3:0]
	F8	D16	Date Code = April 22, 2016	0x0	E7[7:4]
	FO	D17	Date Code = April 22, 2016	0x9	E8[3:0]
		D18	Date Code = April 22, 2016	0x6	E8[7:4]

Table 9. Example PSI5 initialization phase 2 data...continued

NXP Semiconductors

AN13761

PSI5 programming mode procedures for FXLS9xxxx sensors

6.3 Program UF2: device configuration

The UF2 block of memory includes the user programmable communication and sensor signal chain configuration information.

6.3.1 Enable and Configure the Data Sources

Each channel of the FXLS93xxx devices is capable of two independently configurable data sources. Data source types include:

- · Acceleration data with offset cancellation enabled
- · Acceleration data with offset cancellation disabled (bypassed)
- Temperature sensor data

Figure 16 shows a pictorial mapping of the sources to their source identifiers and associated data.

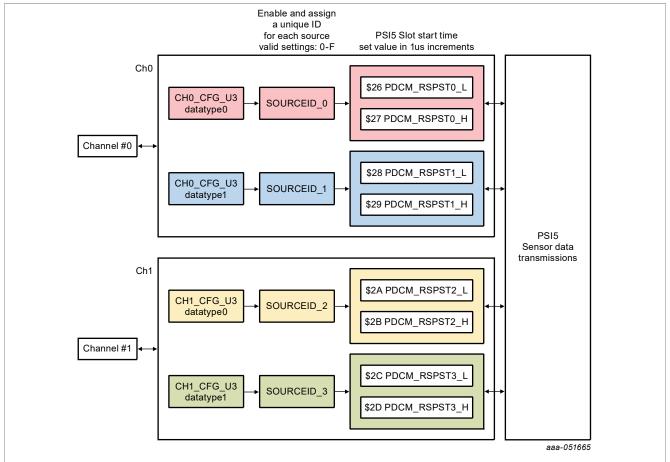


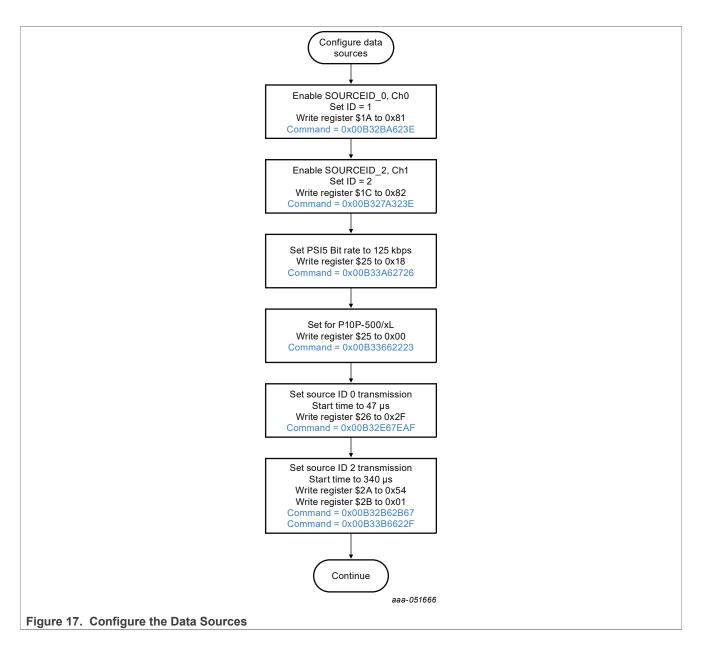
Figure 16. Data source mapping diagram

PSI5 Daisy Chain mode or Asynchronous mode

In addition to data source transmission configuration, other PSI5 transmission configurations are possible by writes to the CHIPTIME register and the PSI5_CFG register. Some possible configurations include:

PSI5 bit rate:

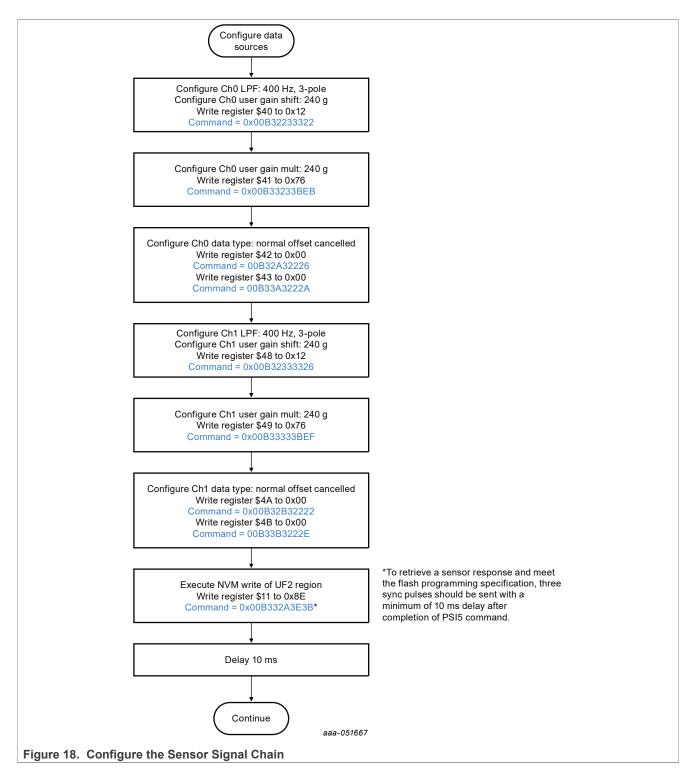
PSI5 error checking:


PSI5 Low-power mode

PSI5 Sync Pulse Blanking:

125 kbit/s or 189 kbit/s parity or 3-bit CRC Default set for 500 μs Sync pulse rate

<u>Figure 17</u> shows one example configuration enabling acceleration data with offset cancellation enabled for each channel.


PSI5 programming mode procedures for FXLS9xxxx sensors

6.4 Configure the sensor signal chain

For specific use cases, the user can configure the sensor signal chain for each channel. <u>Figure 18</u> shows an example typical configuration for PSI5. <u>Section 6.4.1</u>, <u>Section 6.4.2</u>, and <u>Section 6.4.3</u> describe the user configurable options for the signal chain that apply to PSI5 transmissions.

PSI5 programming mode procedures for FXLS9xxxx sensors

6.4.1 Signal chain low-pass filter selection

A combinaton of the LPF bits and the SAMPLERATE bits in the CHx_CFG_U1 register selects the signal chain low-pass filter as shown in the datasheet. The LPF selection table is shown in <u>Table 10</u>.

					Low-pass filter type	
LPF[3]	LPF[2]	LPF[1]	LPF[0]	SAMPLERATE = 00, 01	SAMPLERATE = 10	SAMPLERATE = 11
				16 µs	32 µs	64 µs
0	0	0	0	400 Hz, 4-Pole	200 Hz, 4-Pole	100 Hz, 4-Pole
0	0	0	1	400 Hz, 3-Pole	200 Hz, 3-Pole	100 Hz, 3-Pole
0	0	1	0	400 Hz, 4-Pole	200 Hz, 4-Pole	100 Hz, 4-Pole
0	0	1	1	400 Hz, 3-Pole	200 Hz, 3-Pole	100 Hz, 3-Pole
0	1	0	0	325 Hz, 3-Pole	162.5 Hz, 3-Pole	81.25 Hz, 3-Pole
0	1	0	1	370 Hz, 2-Pole	185 Hz, 2-Pole	92.5 Hz, 2-Pole
0	1	1	0	180 Hz, 2-Pole	90 Hz, 2-Pole	45 Hz, 2-Pole
0	1	1	1	100 Hz, 2-Pole	50 Hz, 2-Pole	25 Hz, 2-Pole
1	0	0	0	1500 Hz, 4-Pole	750 Hz, 4-Pole	375 Hz, 4-Pole
1	0	0	1	500 Hz, 3-Pole	250 Hz, 3-Pole	125 Hz, 3-Pole
1	0	1	0	800 Hz, 4-Pole	400 Hz, 4-Pole	200 Hz, 4-Pole
1	0	1	1	1200 Hz, 4-Pole	600 Hz, 4-Pole	300 Hz, 4-Pole
1	1	0	0	120 Hz, 3-Pole	60 Hz, 3-Pole	30 Hz, 3-Pole
1	1	0	1	20 kHz, 2-Pole	10 kHz, 2-Pole	5 kHz, 2-Pole
1	1	1	0	120 Hz, 2-Pole	60 Hz, 2-Pole	30 Hz, 2-Pole
1	1	1	1	50 Hz, 4-Pole	25 Hz, 4-Pole	12.5 Hz, 4-Pole

Table 10. Signal chain low-pass filter selection

6.4.2 Signal chain user gain selection

A combination of the U_SNS_SHIFT bits in the CHx_CFG_U1 register and the U_SNS_MULT bits in the CHx_CFG_U2 register selects the signal chain user gain. The equation and some example user range and sensitivities are included in the data sheet. The process and equations for determining the U_SNS_SHIFT and U_SNS_MULT settings from desired range and sensitivity values is listed below along with a typical high g PSI5 example.

- 1. Determine the overall sensitivity adjustment factor:
 - Desired Typical User Range = ±240 g with 10-bit data
 - Calculate Desired Sensitivity:

Sense_{Typical Desired} =
$$\frac{2^9 \cdot 32}{Range_{Typical Desired}} = \frac{480}{240} = 2.00 LSB | g$$

• Calculate the required sensitivity adjustment for a High g device:

$$SENSE_{Adjust \ Total} = \frac{Sense_{Typical \ Desired}}{Sense_{Typical \ NXP \ Trim}} = \frac{2.00}{\left(\frac{10.9465}{4}\right)} = 0.7308$$

2. Determine the best U_SNS_SHIFT setting:

Sense _{AdjustTotal}	U_SNS_SHIFT Gain	U_SNS_SHIFT Setting
Sense _{AdjustTotal} < 0.25	Invalid Range	Invalid Range
$0.25 \leq Sense_{AdjustTotal} < 0.50$	0.25	00
$0.50 \leq Sense_{AdjustTotal} < 1.00$	0.50	01

AN13761 Application note © 2023 NXP B.V. All rights reserved.

Sense _{AdjustTotal}	U_SNS_SHIFT Gain	U_SNS_SHIFT Setting
$1.00 \leq Sense_{AdjustTotal} < 2.00$	1.00	10
$2.00 \leq Sense_{AdjustTotal} < 4.00$	2.00	11
4.00 ≤ Sense _{AdjustTotal}	Invalid Range	Invalid Range

3. Determine the U_SNS_MULT setting:

$$U SNS MULT = ROUND \left[\left(\frac{Sense_{Typical Desired}}{Sense_{Typical NXP Trim^*U SNS SHIFT}} - 1 \right) \times 256 \right] = \left(\frac{0.7308}{0.50} - 1 \right) \times 256 = 118 decimal U_SNS_MULT = 0X76$$

6.4.3 Signal chain data type configuration

Each source enabled (as described in <u>Section 6.3.1</u>) must have its data type configured. Datatype configuration is described in the data sheet. <u>Table 11</u> is a simplified table.

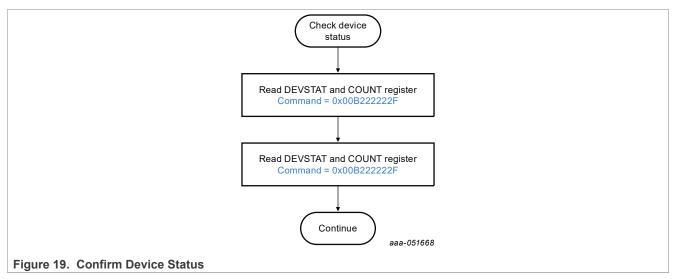
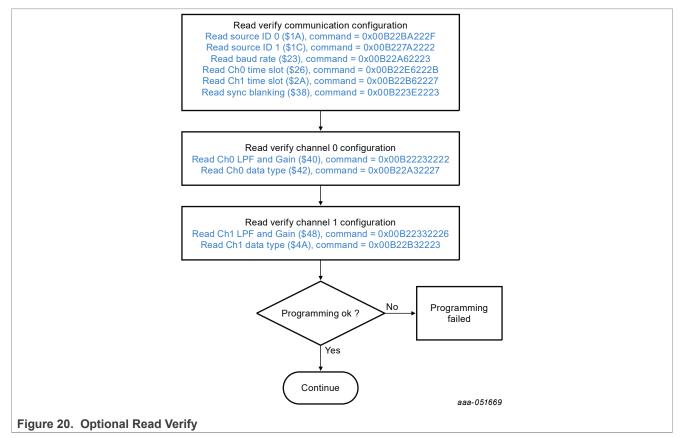

CHx DATA	TYPEx[1:0]	Sensor data description
0	0	Offset Cancelled Data as Configured by the OC_FILT bits
0	1	Raw Data (No Offset Cancellation)
1	0	Temperature Sensor Data
1	1	Temperature Sensor Data

Table 11. Simplified signal chain data type configuration

6.5 Confirm device status


Once programming is complete, the device reads back the new data from the OTP array and completes the memory verification. If the OTP write fails, the device status includes an error. Figure 19 shows the procedure to confirm the device status.

Note that self-test is not automatically run in PSI5 Programming Mode so the Chx_ERR bits are set due to the ST_INCMPLT bit being set.

6.6 Optional read verify

If no memory errors are present after the OTP write and register values were verified after each register write during the programming process, then the programming process is complete. An additional read verify can be completed to confirm post OTP programming register values. <u>Figure 20</u> shows the read verify process.

6.7 Optional complete self-test

A self-test procedure will be added to the next revision of this application note.

7 Glossary

Table 12. Glossary of terms				
Term	Definition			
Analog self-test	A method to test the acceleration signal chain by electrostatically deflecting the transducer proof mass and measuring the device output.			
Digital self-test	A method to test the digital portion of the acceleration signal chain by forcing a value or a sequence of values at the output of the analog-to-digital converter and measuring the device output.			
DSP	Digital Signal Processing Block			
OTP	One Time Programmable Memory			
POR	Power-On Reset			
PSI5	Peripheral Sensor Interface, fifth Generation. A single controller, multiple secondary communication interface that provides both secondary power and communication on a 2-wire bus.			

AN13761 Application note

8 References

- [1] FXLS9xxxx, Dual-channel inertial sensor, data sheet, <u>https://www.nxp.com/docs/en/data-sheet/FXLS9xxxx.pdf</u>
- [2] FXLS9xxx0, Single channel inertial sensor, data sheet, <u>https://www.nxp.com/docs/en/data-sheet/FXLS9xxx0.pdf</u>
- [3] PSI5 Technical Specification Version 2.1, Dated October 8, 2012, https://www.psi5.org/specification

9 Revision history

Table 13. Revision History				
Rev	Date	Description		
1.1	20231129	 <u>Section 6.2, Figure 15</u>, revised the image adding a note. <u>Section 6.4</u>, Figure 18, revised the image adding a note. <u>Section 9</u>, relocated the revision history from the start to the end of the document to conform to NXP's document content hierarchy. 		
1	20230615	Initial Release		

10 Appendix

10.1 Example PSI5 Programming Mode Sequence with Timing

Delta Time (ms)	Time from POR (ms)	Comma	nd Type	Register Addr	Register Data	Comment	Full Command (Hex)
6	6	POR Delay	Delay			POR Delay	
7.75	13.75	Startup Delay	Delay			Startup Delay pluse 31 Sync Pulses	FFFFFFF
3.6	17.35	PME	PME				ACF9
11.25	28.6	XLONG	Write	1A	81	Enable Channel 1 Data	00B32BA623E
11.25	39.85	XLONG	Write	1C	82	Enable Channel 2 Data	00B327A323E
11.25	51.1	XLONG	Write	23	18	Set baud rate to 125 kbit/s	00B33A62726
11.25	62.35	XLONG	Write	26	2F	Channel 0 Timeslot = 47 μs	00B32E67EAF
11.25	73.6	XLONG	Write	27	00	Channel 0 Timeslot = 47 μs	00B33E62226
11.25	84.85	XLONG	Write	2A	54	Channel 1 Timeslot = 340 μs	00B32B62B67
11.25	96.1	XLONG	Write	2B	01	Channel 1 Timeslot = 340 μs	00B33B6622F
11.25	107.35	XLONG	Write	40	12	Channel 0 400 Hz, 3-Pole LPF, 120 g High g	00B32233322
11.25	118.6	XLONG	Write	41	76	Channel 0 400 Hz, 3-Pole LPF, 120 g High g	00B33233BEB
11.25	129.85	XLONG	Write	42	00	Channel 0 Offset cancellation with 0.04 Hz, 1-Pole LPF	00B32A32226
11.25	141.1	XLONG	Write	43	00	Channel 0 Offset cancellation with 0.04 Hz, 1-Pole LPF	00B33A3222A
11.25	152.35	XLONG	Write	48	12	Channel 1 400 Hz, 3-Pole LPF, 120 g High g	00B32333326
11.25	163.6	XLONG	Write	49	76	Channel 1 400 Hz, 3-Pole LPF, 120 g High g	00B33333BEF
11.25	174.85	XLONG	Write	4A	00	Channel 1 Offset cancellation with 0.04 Hz, 1-Pole LPF	00B32B32222

Delta Time (ms)	Time from POR (ms)	Comma	nd Type	Register Addr	Register Data	Comment	Full Command (Hex)
11.25	186.1	XLONG	Write	4B	00	Channel 1 Offset cancellation with 0.04 Hz, 1-Pole LPF	00B33B3222E
11.25	197.35	XLONG	Write	14	E0	Enable writes to the PSI5 Init Phase 2 Data Section	00B326A22F3
11.25	208.6	XLONG	Write	E0	44	Protocol = V1.3	00B3227AA6E
11.25	219.85	XLONG	Write	E1	FF	0xFF Supplier Code	00B3327FFFF
11.25	231.1	XLONG	Write	E2	10	High g Sensor	00B32A7A32A
11.25	242.35	XLONG	Write	E3	80		00B33A7A23A
11.25	253.6	XLONG	Write	E4	00		00B3267A22E
11.25	264.85	XLONG	Write	E5	00		00B3367A222
11.25	276.1	XLONG	Write	E6	00		00B32E7A22B
11.25	287.35	XLONG	Write	E7	02	Set Data Code: April 22, 2016	00B33E7B22F
11.25	298.6	XLONG	Write	E8	69	Set Data Code: April 22, 2016	00B3237E6E7
11.25	309.85	XLONG	Write	E9	FF	0xFF Supplier Code	00B3337FFFB
11.25	321.1	XLONG	Write	EA	10	High g Sensor	00B32B7A32E
11.25	332.35	XLONG	Write	EB	80	120 g Sensor	00B33B7A23E
11.25	343.6	XLONG	Write	EC	00		00B3277A22A
11.25	354.85	XLONG	Write	ED	00		00B3377A226
11.25	366.1	XLONG	Write	EE	00		00B32F7A22F
11.25	377.35	XLONG	Write	11	80	Write the PSI5 Initialization Phase 2 data to OTP	00B332A2236
8.75	386.1	Delay	Delay			Delay 10 ms	
11.25	397.35	XLONG	Write	11	8E	Write the Configuration Information to OTP	00B332A3E3B
8.75	406.1	Delay	Delay			Delay 10 ms	
11.25	417.35	XLONG	Read	00	00	Check Status	00B222222F
11.25	428.6	XLONG	Read	00	00	Check Status	00B222222F

10.2 PSI5 3-Bit CRC Calculation Examples

10.2.1 3-Bit CRC

Figure 21 shows some example visual basic to calculate the PSI5 XLONG 3-bit CRC.

- Function PSI5XLONGCRC3(SnsAdr As String, FunctionCode As String, RegAdr As String, RegData As String, SEED As String, Poly As String) As String
 - The data is composed of the following concatenated fields:
 - 3-Bit Reversed SnsAdr 100
 - 3-Bit Reversed FunctionCode: 100
 - 8-Bit Reversed RegAdr: 0x40 0000 0010
 - 8-Bit Reversed RegData: 0x12 0100 1000
 - Example: Command = 100 100 0000 0010 0100 1000
 - Example with Start and Sync Bits Command = 010 1 100 1 100 1 000 1 000 1 100 1 100 1 100 1 000 1 0
 - Poly is the 4-bit CRC polynomial in binary
 - Example: Polynomial = $X^3 + X + 1$ Poly = 1011

 SEED is the 3-bit CRC Initial value in binary Example: Seed = 0 x 7 SEED = 111

In this example, the CRC = 0x0.

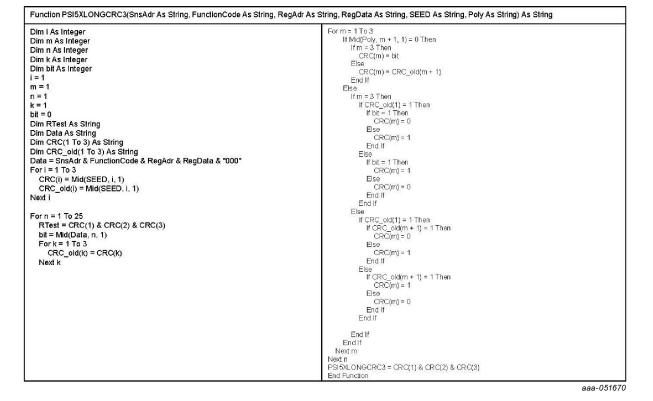


Figure 21. PSI5 XLONG, 3-Bit CRC Visual Basic

PSI5 programming mode procedures for FXLS9xxxx sensors

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Suitability for use in automotive applications - This NXP product has been qualified for use in automotive applications. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at <u>PSIRT@nxp.com</u>) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners. **NXP** — wordmark and logo are trademarks of NXP B.V.

PSI5 programming mode procedures for FXLS9xxxx sensors

Tables

Tab. 1.	Applicable parts2
Tab. 2.	PSI5 OTP Programming of a PSI5
	application device2
Tab. 3.	PSI5 parameters and values4
Tab. 4.	PSI5 programming mode entry command
	parameters and values6
Tab. 5.	PSI5 programming mode entry settings6
Tab. 6.	PSI5 programming register read
	parameters and values9

Figures

Fig. 1.	Application schematic	
Fig. 2.	Programming Voltage Supply Ramp	4
Fig. 3.	PSI5 Programming Mode Short Command	
	and Response Format	4
Fig. 4.	PSI5 Programming Mode Extra Long	
	Command and Response Format	5
Fig. 5.	Power On PSI5 Programming Mode	
	Communication Delay	5
Fig. 6.	PSI5 Programming Mode Entry Start	
-	Condition, 31 Sync Pulses	6
Fig. 7.	PSI5 Programming Mode Entry Command	7
Fig. 8.	PSI5 Programming Mode Entry Response	8
Fig. 9.	PSI5 Programming Mode Command Start	
C C	Condition, 6 nSync Bits	9
Fig. 10.	PSI5 programming mode read register	
č	command and response format	9

PSI5 programming register write	
parameters and values	10
UF0 register to PSI5 initialization phase 2	
data field mapping	12
Example PSI5 initialization phase 2 data	13
Signal chain low-pass filter selection	19
Simplified signal chain data type	
configuration	20
Glossary of terms	21
Revision History	22
	parameters and values UF0 register to PSI5 initialization phase 2 data field mapping Example PSI5 initialization phase 2 data Signal chain low-pass filter selection Simplified signal chain data type configuration Glossary of terms

PSI5 programming mode write register
command and response format 10
PSI5 programming mode command and
response example10
PSI5 programming mode OTP
programming procedure for FXLS93xxx11
PSI5 Programming Mode - Read and
Record Traceability Information12
PSI5 programming mode – program
initialization phase 2 data15
Data source mapping diagram16
Configure the Data Sources17
Configure the Sensor Signal Chain
Confirm Device Status 20
Optional Read Verify21
PSI5 XLONG, 3-Bit CRC Visual Basic 24

PSI5 programming mode procedures for FXLS9xxxx sensors

Contents

1	Introduction2
2	Applicable parts2
3	Application schematic and device
	connections2
4	Device power restrictions3
5	Bidirectional communication via PSI5
	programming mode4
5.1	Power on PSI5 programming mode
	communication delay5
5.2	PSI5 programming mode entry start
	condition5
5.3	PSI5 programming mode entry command6
5.4	PSI5 programming mode normal command
	start condition8
5.5	PSI5 programming mode normal
	commands and responses9
6	User OTP array programming via PSI5
	programming mode10
6.1	Optional read and record traceability
	information11
6.2	Program UF0: PSI5 initialization phase 2
	data12
6.3	Program UF2: device configuration 15
6.3.1	Enable and Configure the Data Sources 16
6.4	Configure the sensor signal chain 17
6.4.1	Signal chain low-pass filter selection18
6.4.2	Signal chain user gain selection19
6.4.3	Signal chain data type configuration20
6.5	Confirm device status20
6.6	Optional read verify21
6.7	Optional complete self-test21
7	Glossary21
8	References22
9	Revision history22
10	Appendix22
10.1	Example PSI5 Programming Mode
	Sequence with Timing22
10.2	PSI5 3-Bit CRC Calculation Examples23
10.2.1	3-Bit CRC 23
	Legal information25

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© 2023 NXP B.V.

All rights reserved.

For more information, please visit: https://www.nxp.com