
AN14531
How to Implement USB Audio Mixer on LPC55S69
Rev. 1.0 — 13 January 2025 Application note

Document information
Information Content

Keywords AN14531, LPC55S69, USB audio, audio mixer, audio speaker

Abstract This application note describes how to implement a USB audio mixer on the NXP LPC55S69.
It introduces the steps to implement a USB audio mixer based on the NXP SDK examples, the
management of the audio ringbuffer, and the measurement of USB audio latency.

https://www.nxp.com

NXP Semiconductors AN14531
How to Implement USB Audio Mixer on LPC55S69

1 Introduction

In the application of wired gaming headsets or wireless gaming headsets with USB dongle, a USB audio mixer
is required. For example, when playing online games, we want to hear the sounds in the game and the sounds
of teammates. It requires that a USB interface can be enumerated as two USB speakers, to hear the sounds of
multiple USB audio speakers synchronously, and also to support the function of USB microphone. Taking the
wired gaming headset as an example, it consists of two USB audio speaker: Chat speaker and Game speaker.
The USB audio mixer implemented in this application note simply merges the USB audio data received by two
USB audio speakers, and then transmits the merged audio data to the audio codec through the I2S interface.
Then, the customer can hear both sounds at the same time. This application note describes how to implement
the USB audio mixer function on the LPC55S69. This USB audio mixer can support USB audio class 1.0
(UAC1.0) and USB audio class 2.0 (UAC2.0).

The solution based on KL27 and NXH3670 wireless gaming headset of NXP has implemented the function
of USB audio mixer, but this solution only supports UAC1.0 and the KL27 SDK version used is SDK 2.7. This
application note introduces how to implement the USB audio mixer function on the LPC55S69. This USB audio
mixer can support the following functions:

• Supporting UAC1.0 and UAC2.0
• Supporting USB audio synchronous mode
• Supporting high-speed USB and full-speed USB interfaces of LPC55S69
• Supporting LPC55S69 SDK v2.15
• Supporting 48 K/16-bit stereo audio format

The USB audio mixer in this application note is implemented based on the LPC55S6-EVK board and
usb_composite_audio_unified_bm example in LPC55S69 SDK 2.15. The relevant code of the USB
dongle mixer in NXH3670 SDK G9.2 is ported to the USB audio example of LPC55S69 SDK 2.15, and the USB
descriptor of UAC2.0 is added. The following chapters introduce how to implement the USB audio mixer on
LPC55S69.

2 Implementation of USB audio mixer

2.1 LPC55S69 SDK example
The usb_composite_audio_unified_bm example in the LPC55S69 SDK 2.15 has implemented a USB
composite device. It can support a USB audio speaker, a USB recorder, and a USB HID device. We can use the
original USB audio speaker in the SDK as the Chat speaker of the USB audio mixer. Therefore, to realize the
function of the USB audio mixer, we only need to add a Game speaker based on LPC55S69 SDK example.

2.2 Add a USB audio speaker
This section describes how to modify the USB description, related variables, and functions to add a USB audio
speaker.

2.2.1 Add corresponding USB descriptor

To support a new USB audio speaker (Game speaker) interface, add USB descriptors as shown in Table 1.

AN14531 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 13 January 2025 Document feedback
2 / 13

https://www.nxp.com/webapp/sps/download/license.jsp?colCode=NXH3670-SDK-GAMING&appType=file1&DOWNLOAD_ID=null
https://www.nxp.com/webapp/sps/download/license.jsp?colCode=NXH3670-SDK-GAMING&appType=file1&DOWNLOAD_ID=null
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14531

NXP Semiconductors AN14531
How to Implement USB Audio Mixer on LPC55S69

USB descriptor
type

USB descriptor
name

Variable in USB
descriptor structure

Descriptor
length in
UAC1.0

Descriptor
length in
UAC2.0

Comments

Interface
Association
Descriptor

Standard Interface
Association
Descriptor

iadAudio 8 8

Audio Control (AC)
Interface Descriptor

Standard
AC Interface
Descriptor

control 9 9 UAC1.0
byte 7: bInterface
Protocol, not used, must
be set to 0.
UAC2.0
byte 7: IP_VERSION_02_
00

Class-Specific AC
Interface Header
Descriptor

controlSub 9 9 UAC1.0
byte 7: bInCollection
byte 8: baInterfaceNr
UAC2.0:
byte 5: bCategory
byte 8: bmControls

Clock Source
Descriptor

controlSpkr.clock
Source

0 8 UAC1.0 has no CLOCK
Source Descriptor.

Input Terminal
Descriptor

controlSpkr.input
Terminal

12 17 UAC2.0
byte 7: bCSourceID
byte 14-15: bmControls

Feature Unit
Descriptor

　 0 18 UAC1.0 has no Feature
Unit.

Audio Class-Specific
AC Interface
Descriptor

Output Terminal
Descriptor

controlSpkr.output
Terminal

9 12 UAC2.0
byte 8 bCSourceID
byte 9 bmControls

Endpoint Descriptor Endpoint
Descriptor

controlInterrupt
Endpoint

9 0 UAC2.0 does not require
an interrupt In endpoint
descriptor.

Standard
AS Interface
Descriptor (alt 0)

streamSpkr.altSet0 9 9 UAC1.0
byte 7: bInterface
Protocol, not used, must
be set to 0.
UAC2.0
byte 7: IP_VERSION_02_
00Audio Streaming

Interface Descriptor Standard
AS Interface
Descriptor (alt 1)

streamSpkr.altSet1 9 9 UAC1.0
byte 7: bInterface
Protocol, not used, must
be set to 0.
UAC2.0
byte 7: IP_VERSION_02_
00

Table 1. USB descriptor for USB audio game speaker

AN14531 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 13 January 2025 Document feedback
3 / 13

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14531

NXP Semiconductors AN14531
How to Implement USB Audio Mixer on LPC55S69

USB descriptor
type

USB descriptor
name

Variable in USB
descriptor structure

Descriptor
length in
UAC1.0

Descriptor
length in
UAC2.0

Comments

Class-Specific
AS Interface
Descriptor

streamSpkr.as
Interface

7 16 UAC1.0
byte 3: bTerminalLink
byte 4: bDelay
byte 5: wFormatTag
UAC2.0
byte 4: bmControls
byte 5: bFormatType
byte 6-9: bmFormats
byte 10: bNrChannels
byte 11-14: bmChannel
Config
byte 15: iChannelNames

Class-Specific
AS Format Type
Descriptor

streamSpkr.audio
Format

11 6 UAC1.0
byte 4: bNrChannels
byte 7 bSamFreqType
byte 8-11 tSamFreq

Standard AS
Isochronous Audio
Data Endpoint
Descriptor

streamSpkr.iso
Endpoint

9 7 UAC1.0
byte 7: bRefresh
byte 8: bSynchAddress

Audio Streaming
Endpoint
Descriptors

Class-Specific AS
Isochronous Audio
Data Endpoint
Descriptor

streamSpkr.
specificIso
Endpoint

7 8 UAC1.0
byte 4: bLockDelayUnits
byte 5-6: wLockDelay
UAC2.0
byte 3: bEndpoint
Address
byte 5: wMaxPacketSize

Table 1. USB descriptor for USB audio game speaker...continued

In this application note, the usb_class_audio_headphones_device_descriptor_t structure is used
to represent the USB descriptor of the Game speaker. Figure 1 shows the member variables contained in this
structure.

Figure 1. usb_class_audio_headphones_device_descriptor_t structure

As shown in Table 1, the descriptors of USB audio game speaker include the interface association descriptor,
audio control interface descriptor, audio stream interface descriptor, and audio stream endpoint descriptor.
In addition, when comparing UAC1.0 and UAC2.0, the content of the same descriptor may be different. The
AN14531 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 13 January 2025 Document feedback
4 / 13

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14531

NXP Semiconductors AN14531
How to Implement USB Audio Mixer on LPC55S69

Comments column in Table 1 also briefly lists the differences between the descriptors of UAC1.0 and UAC2.0.
For a more specific comparison, see the USB spec (USB Audio Class 1.0 and USB Audio Class 2.0) and
AN14531SW.

2.2.2 Modify other configurations

In addition to adding the USB descriptors in Table 1, it is also necessary to modify the number of interfaces and
endpoints, as well as modify other variables and related callback functions.

2.2.2.1 Modify the number of interfaces and endpoints

To implement a USB audio Game speaker, add two USB interfaces: the audio control interface and the audio
stream interface. The new interface configuration is as below.

• #define USB_AUDIO_CHAT_CONTROL_INTERFACE_INDEX (0)
• #define USB_AUDIO_RECORDER_STREAM_INTERFACE_INDEX (1)
• #define USB_AUDIO_CHAT_SPEAKER_STREAM_INTERFACE_INDEX (2)
• #define USB_AUDIO_GAME_CONTROL_INTERFACE_INDEX (3)
• #define USB_AUDIO_GAME_SPEAKER_STREAM_INTERFACE_INDEX (4)
• #define USB_HID_CONSUMER_CONTROL_INTERFACE_INDEX (5)

It is also necessary to add two USB endpoints for the USB audio Game speaker, one is the audio control
endpoint and the other is the audio stream endpoint. The new endpoint configuration is as below.

• #define USB_AUDIO_CHAT_CONTROL_ENDPOINT (6)
• #define USB_AUDIO_CHAT_SPEAKER_STREAM_ENDPOINT (1)
• #define USB_AUDIO_RECORDER_STREAM_ENDPOINT (3)
• #define USB_AUDIO_GAME_CONTROL_ENDPOINT (7)
• #define USB_AUDIO_GAME_SPEAKER_STREAM_ENDPOINT (2)
• #define USB_HID_CONSUMER_CONTROL_ENDPOINT (4)

2.2.2.2 Modify related variables and functions

In addition to modifying the number of interfaces and endpoints, add some variables related to the USB audio
Game speaker used in the USB enumeration process, as shown in Table 2.

USB Game speaker related variables

g_UsbDeviceAudioGameSpeakerEntity

g_UsbDeviceAudioGameSpeakerEntities

g_UsbDeviceAudioGameSpeakerControInterface

g_UsbDeviceAudioGameSpeakerInterfaces

g_UsbDeviceAudioInterfaceListGameSpeaker

g_UsbDeviceAudioClassGameSpeaker

g_CompositeClassConfig

Table 2. Added variables for USB audio Game speaker

For more information about the modification of related variables, see AN14531SW.

To handle the requests related to the USB audio game interface, modify functions shown in Table 3.

AN14531 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 13 January 2025 Document feedback
5 / 13

https://www.usb.org/document-library/audio-device-document-10
https://www.usb.org/document-library/audio-devices-rev-20-and-adopters-agreement
https://www.nxp.com/doc/AN14531SW
https://www.nxp.com/doc/AN14531SW
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14531

NXP Semiconductors AN14531
How to Implement USB Audio Mixer on LPC55S69

Function name Description

USB_DeviceCallback() Add the processing of Set Interface request of
game interface

APPInit() Add audioGameSpeakerHandle related
configuration

USB_DeviceAudioRequest() Update audio specific request handling

USB_DeviceAudioSpeakerSetInterface() Add processing for set Game interface request

Table 3. Functions that need to be modified

Note: Table 2 and Table 3 only show some of the variables and functions to be modified or added. For more
code modifications, see AN14531SW.

2.3 ringbuffer management
This application note uses the ringbuffer management mechanism from the NXH3670 SDK (USB dongle
mixer project). Each audio speaker uses a ringbuffer to manage audio data. Figure 2 shows the flow of
audio data.

USB host USB Device
Controller

gs_Interfaces[0].buffer[3072]

gs_Interfaces[1].buffer[3072]

s_audioService_BufferOut[3072] I2S Transmitter
DMA

Ge
tM

ixe
dS

am
pl

es
_3

2(
16

)

Figure 2. Audio data flow

The following source files are used for the management of audio ringbuffer.

• audio_ringbuffer.h
• audio_ringbuffer.c
• audio_mixer.h
• audio_mixer.c
• audio_tx.h
• audio_tx.c

The audio_mixer.c file defines the gs_Interfaces[2] structure array, which includes two structures
corresponding to the two audio speakers: Chat and Game. Each structure has a buffer variable. Both buffers
are ringbuffer with a length of 3072 bytes, which are used to store the USB audio data received by the
Chat and Game speakers. In the USB interrupt service routine, the AUDIO_MIXER_WriteSamples() function
is called to copy the received USB audio packet to gs_Interfaces[x].buffer[3072]. When the filling
value of the ringbuffer reaches the set threshold, DMA transmission starts. Before each new DMA transfer,
the audio_GetAndTransmitSamples function is called (the audio_GetAndTransmitSamples function
calls the GetMixedSamples_32(16) function) to merge the audio data in gs_Interfaces[0].buffer
and gs_Interfaces[1].buffer, and copy the merged data to the s_audioService_BufferOut[3072]
array. Then, DMA transfer is started to move the mixed audio data to the I2S TX FIFO for playback.

2.4 USB audio synchronization
The USB audio device in this application note works in synchronous mode, which means that the USB device
must follow the Start Of Frame (SOF) signal of the USB host to match the playback speed of the audio data
on the USB device side with the USB SOF signal. In this application note, the Ctimer timer is used to capture
the USB SOF signal, and the fractional division coefficient of the audio clock (Audio PLL) is adjusted in the

AN14531 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 13 January 2025 Document feedback
6 / 13

https://www.nxp.com/doc/AN14531SW
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14531

NXP Semiconductors AN14531
How to Implement USB Audio Mixer on LPC55S69

Ctimer capture interrupt service routine to match the audio clock with the USB SOF signal. For the specific
implementation method, see the CTIMER_SOF_TOGGLE_HANDLER_PLL() function in AN14531SW.

2.5 Audio latency measurement
The audio latency in this application note is related to the filling level of the ringbuffer when the DMA transfer
starts. The length of each DMA transfer is the length of a USB audio packet. For the UAC1.0 device with two
channels 48K/16bit audio format, the length of each USB audio packet is 192 bytes, so the length of each
DMA transfer is 192 bytes. As shown in Figure 3, when the filling level of the ringbuffer is greater than or equal
to four DMA transfer lengths. DMA transfer starts, that is, at least four USB audio packets must be received
before DMA transfers can be started. For UAC1.0 devices, the USB host sends a USB audio packet every 1ms,
that is, the audio latency from the USB host starting to send audio data to the USB device starting to transmit
audio data to the Codec is about 3-4 ms. For high-speed UAC2.0 devices, the minimum interval of USB audio
packets is 125 µs, that is, a USB audio packet is sent in each microframe, and the size of this audio packet is
24 bytes. In the LPC55S69 SDK, the USB audio packet interval of the high-speed UAC2.0 device is set to four
microframes by default. That is, an audio packet is sent every 0.5 ms, and each audio packet is 96 bytes, so the
audio latency should be 1.5 - 2 ms. For high-speed UAC2.0 devices, if the audio packet interval is adjusted to
125 µs and the initial fill level is adjusted to 2-3 USB audio packet lengths, the audio latency can theoretically be
less than 1 ms.

Figure 3. Timing to start DMA transfer

For full-speed USB, you can use a logic analyzer to measure the USB_DP/DM signal and the I2S signal to
calculate the USB to I2S audio latency, as shown in Figure 4.

Figure 4. Measure USB to I2S audio latency using a logic analyzer

When the threshold of the initial fill value of the ringbuffer is AUDIO_GetTxDMATransferSize() * 4, that is, DMA
transfer starts after receiving four USB audio packets. Figure 5 shows the audio delay measurement results of
UAC1.0. The audio latency from USB to I2S is 3.4 ms.

AN14531 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 13 January 2025 Document feedback
7 / 13

https://www.nxp.com/doc/AN14531SW
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14531

NXP Semiconductors AN14531
How to Implement USB Audio Mixer on LPC55S69

Figure 5. Measure audio latency of UAC1.0 device

When using the high-speed USB interface and enabling UAC2.0 mode, the high-speed USB clock is 480 M.
Since the maximum sample rate of the logic analyzer used is 500 M, it cannot accurately sample USB DP/
DM signals. Currently, we can use the GPIO toggle method to measure the USB to I2S latency. Toggle a GPIO
(P1_7) every time a USB audio packet is received.

Figure 6. Toggle GPIO P1_7 after receiving USB audio packet

Then toggle another GPIO (P1_6) when starting a DMA transfer and when the DMA transfer is completed.

Figure 7. Toggle GPIO P1_6 when starting a DMA transfer and when a DMA transfer is completed

The time from receiving the first USB audio packet to starting DMA transfer is the audio latency from USB to
I2S. As shown in Figure 8, the interval between USB audio packets is 500 µs, that is, a USB audio packet is
sent every four microframes. The length of each USB audio packet is 96 bytes. After receiving four USB audio
packets, DMA transfer starts. The audio latency from USB to I2S is 1.65 ms.

Figure 8. Measure audio latency on high-speed UAC2.0 device

To get a shorter audio latency, set the interval of the USB audio packet to 125 µs, that is, send a USB audio
packet in each microframe, and reduce the initial fill threshold of the ringbuffer. However, the minimum threshold
is the length of two USB audio packets, because we must prepare at least two DMA transfer data before
starting DMA transfer to form a link DMA transfer. After the first DMA transfer is completed, the second DMA
transfer is started immediately to ensure continuous playback of audio data.

AN14531 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 13 January 2025 Document feedback
8 / 13

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14531

NXP Semiconductors AN14531
How to Implement USB Audio Mixer on LPC55S69

3 USB audio mixer testing

The USB audio mixer implemented in this application note supports UAC1.0 and UAC2.0 modes, and supports
full-speed USB and high-speed USB interfaces. Customers can set the following macro definitions to select
different working modes. These macros are defined in the usb_device_config.h file.

#define USB_DEVICE_CONFIG_LPCIP3511FS (1U)

#define USB_DEVICE_CONFIG_LPCIP3511HS (0U)

#define USB_DEVICE_CONFIG_AUDIO_CLASS_2_0 (0U)

After setting the desired mode, you can start compiling the project and download the compiled program to the
LPC55S69-EVK through the onboard debugger interface (P6) or the external debugger interface (P7). Press the
RESET button (S4) on the board to start running the program. Pay attention to connect the correct USB port to
the PC or other USB host. The full-speed USB interface is P10, and the high-speed USB interface is P9. The
USB host recognizes a composite USB audio device, as shown in Figure 9.

Figure 9. USB audio mixer counted by the USB host

Open two audio players on the USB host and select NXP Dongle mix (Chat) speaker and NXP Dongle mix
(Game) speaker to play the audio. Then you can connect a 3.5 mm headphone to the headphone jack (J2) of
the LPC55S69-EVK board to hear a mixed audio.

4 Conclusion

This application note introduces how to implement a USB audio mixer on the LPC55S69-EVK. Based on the
usb_composite_audio_unified_bm example in the LPC55S69 SDK v2.15, port the descriptors of the USB
dongle mixer in the NXH3670 SDK to this basic project, and add the UAC2.0 function. In addition, the ringbuffer
management mechanism, the implementation of the USB audio synchronization mode, and the measurement
of audio latency are introduced. Customers can implement the USB audio mixer function on the LPC55S69 and
other NXP MCU platforms based on this application note and AN14531SW.

5 Reference

1. NXH3670 SDK Gaming Package
2. Getting started with NxH3670 gaming use case (document AN12360)
3. LPC55S6x/LPC55S2x/LPC552x User manual (document UM11126)
4. USB spec, Audio Device Document 1.0
5. USB spec, Audio Device Rev. 2.0

AN14531 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 13 January 2025 Document feedback
9 / 13

https://www.nxp.com/doc/AN14531SW
https://www.nxp.com/webapp/sps/download/license.jsp?colCode=NXH3670-SDK-GAMING&appType=file1&DOWNLOAD_ID=null
https://www.nxp.com/doc/AN12360
https://www.nxp.com/doc/UM11126
https://www.usb.org/document-library/audio-device-document-10
https://www.usb.org/document-library/audio-devices-rev-20-and-adopters-agreement
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14531

NXP Semiconductors AN14531
How to Implement USB Audio Mixer on LPC55S69

6 Note about the source code in the document

The example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

7 Revision history

Table 4 summarizes the revisions to this document.

Document ID Release date Description

AN14531 v1.0 13 January 2025 Initial public release

Table 4. Revision history

AN14531 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 13 January 2025 Document feedback
10 / 13

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14531

NXP Semiconductors AN14531
How to Implement USB Audio Mixer on LPC55S69

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those
given in the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted
or construed as an offer to sell products that is open for acceptance or
the grant, conveyance or implication of any license under any copyrights,
patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the
product data given in the Limiting values and Characteristics sections of this
document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

AN14531 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 13 January 2025 Document feedback
11 / 13

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14531

NXP Semiconductors AN14531
How to Implement USB Audio Mixer on LPC55S69

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.
Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of
companies.

AN14531 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 13 January 2025 Document feedback
12 / 13

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14531

NXP Semiconductors AN14531
How to Implement USB Audio Mixer on LPC55S69

Contents
1 Introduction .. 2
2 Implementation of USB audio mixer 2
2.1 LPC55S69 SDK example 2
2.2 Add a USB audio speaker2
2.2.1 Add corresponding USB descriptor 2
2.2.2 Modify other configurations 5
2.2.2.1 Modify the number of interfaces and

endpoints ... 5
2.2.2.2 Modify related variables and functions 5
2.3 ringbuffer management6
2.4 USB audio synchronization 6
2.5 Audio latency measurement 7
3 USB audio mixer testing9
4 Conclusion ... 9
5 Reference ..9
6 Note about the source code in the

document ..10
7 Revision history ...10

Legal information ...11

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 13 January 2025
Document identifier: AN14531

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN14531

	1 Introduction
	2 Implementation of USB audio mixer
	2.1 LPC55S69 SDK example
	2.2 Add a USB audio speaker
	2.2.1 Add corresponding USB descriptor
	2.2.2 Modify other configurations
	2.2.2.1 Modify the number of interfaces and endpoints
	2.2.2.2 Modify related variables and functions

	2.3 ringbuffer management
	2.4 USB audio synchronization
	2.5 Audio latency measurement

	3 USB audio mixer testing
	4 Conclusion
	5 Reference
	6 Note about the source code in the document
	7 Revision history
	Legal information
	Contents

