
AN4942
Getting Started with Kinteis EA series MCUs
Rev. 1.0 — 12 June 2024 Application note

Document information
Information Content

Keywords MCU, Internal Clock Source (ICS), Flex Timer Module (FTM)

Abstract This document gives an explanation of the main modules of the Kinetis EA devices so that a
project can be started.

https://www.nxp.com

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

1 Overview

This application note is an introduction to the Kinetis EA series MCUs for automotive solutions. This document
gives an explanation of the main modules of the Kinetis EA devices so that a project can be started.

The application note is divided into the following sections:

• Introduction
• Internal Clock Source (ICS)
• General purpose input/output (GPIO)
• Universal Asynchronous Receiver/Transmitter (UART)
• FlexTimer Module (FTM)
• Analog-to-digital converter (ADC)
• Keyboards Interrupts (KBI)

Each section contains a brief description of each module together with configuration steps and example
code. Also a software project for each module is included. The software included in this application note was
developed for the TRK-KEA128, TRK-KEA64, and TRK-KEA8 board available at www.nxp.com/TRK-KEA128,
www.nxp.com/TRK-KEA64, and www.nxp.com/TRK-KEA8. After reading this application note, you will be
familiar with the new 32-bit MCU for automotive applications. Also you will be able to start a project with a
Kinetis EA MCU.

2 Introduction

This section gives an introduction to the main features and advantages of the new Kinetis EA series MCUs.

The Kinetis EA series MCUs are a highly scalable portfolio of 32-bits ARM® Cortex® -M0+ MCUs aimed for
general automotive applications. The family is optimized for cost-sensitive applications offering low pin-count
option with very low power consumption. With 2.7-5.5 V supply and focus on exceptional EMC/ESD robustness,
Kinetis EA series MCUs devices are well suited to a wide range of applications ranging from body applications,
powertrain companion chips or generic sensor nodes, park assistance, pump/fan controller, and motorcycle
CDI/EFI. In automotive body applications, the Kinetis EA series MCUs are a great option for entry level body
controller or gateway module, window/roof/sun-roof controller, immobilizer or seat/mirror controller, ambient
lighting, just to mention a few.

All the members of the Kinetis EA series MCUs share similar peripherals and offer several pin-count and
memory options allowing developers to migrate easily to MCUs that take advantage of more memory or
peripheral integration. This scalability allows developers to standardize on the Kinetis EA series MCUs for their
end product platforms, maximizing hardware and software reuse and reducing time-to market. Below is shown a
table where the members of the Kinetis EA series MCUs are compared.

Device Flash RAM EE
PROM

Freq MS
CAN

SCI SPI ATD PWT Flex-
Tim

ACMP IIC GPIO Packages

KEAZN8 8K 1K emulated 48
MHz

0 1 1 12c12b1 6c+2c
16b

2 1 up to
22

16
TSSOP/24
QFN

KEAZN16 16K 2K 256B 40
MHz

0 3 2 16c12b1 6c+2c
+2c
16b

2 2 up to
57

32/64
LQFP

Table 1. Kinetis EA series MCUs

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
2 / 23

www.nxp.com/TRK-KEA128
www.nxp.com/TRK-KEA64
www.nxp.com/TRK-KEA8
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

Device Flash RAM EE
PROM

Freq MS
CAN

SCI SPI ATD PWT Flex-
Tim

ACMP IIC GPIO Packages

KEAZN32 34K 4K 256B 40
MHz

0 3 2 16c12b1 6c+2c
+2c
16b

2 2 up to
57

32/64
LQFP

KEAZN64 64K 4K 256B 40
MHz

0 3 2 16c12b1 6c+2c
+2c
16b

2 2 up to
57

32/64
LQFP

KEAZ64 64K 8K emulated 48
MHz

1 3 2 16c12b1 6c+2c
+2c
16b

2 2 up to
71

64/80
LQFP

KEAZ128 128K 16K emulated 48
MHz

1 3 2 16c12b1 6c+2c
+2c
16b

2 2 up to
71

64/80
LQFP

Table 1. Kinetis EA series MCUs...continued

The Kinetis EA series MCUs are supported by several third party and Freescale development tools including
CodeWarrior, Keil, IAR, Processor Expert, and MQX Lite support. Developers can start designing quickly and
easily taking advantage of this broad enablement ecosystem.

The example software that is included has been developed on the TRK-KEA128, TRK-KEA64, and TRK-KEA8
boards using Codewarrior v10.6.

3 Internal clock source (ICS)

This section describes how to configure the clocks of the Kinetis EA series MCUs. In Section 3.2, you will be
capable of configuring the Internal Clock Source module (ICS) to frequency-locked loop engaged internal (FEI)
operation mode and set a bus speed of 20 MHz, using the internal reference clock of the MCU. All labs for this
application note include a function to configure the bus frequency to 20 MHz.

3.1 Description

Before explaining the ICS module, a brief description of the clock distribution is given.

The Cortex® M0+ resides within a synchronous core platform, where the processor and bus masters, flash and
peripheral clocks can be configured independently.

The selection and multiplexing of system clock sources is controlled and programmed via the ICS module. The
setting of clock dividers and module clock gating for the system are programmed via the System Integration
Module (SIM).

The Kinetis EA series MCUs contain the following on-chip clock sources.

• Internal Clock Source (ICS) module: The main clock source generator providing bus clock and other reference
clocks to peripherals.

• System Oscillator (OSC) module: The system oscillator providing reference clock to internal clock source
(ICS), the real-time clock counter clock module (RTC), and other MCU sub-systems.

• Low-Power Oscillator (LPO) module: The on-chip low-power oscillator providing 1 kHz reference clock to RTC
and Watchdog (WDOG).

The ICS module provides a clock source option for the MCU. This module contains a frequency-locked loop
(FLL) as a clock source that is controllable by an internal or external reference clock. The module can provide
this FLL clock or either of the internal or external reference clocks as a source for the MCU system clock.

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
3 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

Whichever ICS clock source is chosen is passed through a reduced bus clock divider (BDIV), which allows a
lower frequency to be derived.

There are also signals provided to control a low-power oscillator (OSC) module. These signals configure and
enable the OSC module to generate its external crystal / resonator clock (OSC_OUT) used by peripheral
modules and as the ICS external reference clock source. The ICS external reference clock can be the external
crystal/resonator (OSC_OUT) supplied by an OSC, or it can be another external clock source.

The ICS has seven operation modes: FEI, FEE, FBI, FBILP, FBE, FBELP, and stop. Figure 1 shows the seven
states of the ICS. In the below diagram, the arrows indicate the allowed transitions between the states and also
show the conditions to enter in that mode.

Figure 1. ICS clocking switching modes

For this application note, the ICS is configured to FEI operation mode. The bus is configured to 20 MHz using
an internal reference oscillator.

The FEI operation mode is entered under the following conditions:

• When the clock source selected is FLL on the ICS control register 1 (ICS_C1 [CLKS] = 0b00).
• When an internal reference clock is selected in the ICS control register 1 (ICS_C1 [IREFS] = 0b1).

For the KEA128 and KEA8 the FLL loop locks the frequency to 1280 times the external reference frequency, as
selected by the reference divider bit. For the KEA64 the FLL loop locks the frequency to 1024 times the external
reference frequency, as selected by the reference divider bit

3.2 Configuration steps

To configure the ICS to operate in FEI mode with a bus frequency of 20 MHz using the internal reference clock
on the KEA128, KEA64, and KEA8, perform the following steps.

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
4 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

• Select internal reference oscillator as clock source for the FLL, by setting the IRCLKEN in ICS control register
1(ICS_C1[IRCLKEN] = 1).

• Choose the reference clock frequency, by writing a value to the SCTRIM bits in ICS control register 3
(ICS_C3[SCTRIM]). Writing a larger value slows down the internal reference clock frequency. Writing a
smaller value speeds up the internal reference clock frequency. For KEA128 and KEA8 writing a value of
0x90, the internal reference clock frequency will be 31.25 kHz. For KEA64 writing a value of 0x50, the internal
reference clock frequency will be 39.0625 kHz.

• Wait until FLL is locked. A 1 in the LOCK bit in the ICS status register indicates that FLL is locked (ICS_S
[LOCK]). Now the clock is running at 40 MHz.

• Select a bus prescaler by writing a value to BDIV in ICS control and status register 2 (ICS_C2 [BDIV]). In this
case, choose a prescaler of 2 by writing 1 to the bit. Now bus clock is running at 20 MHz.

• Clear the loss of lock sticky bit. Write a 1 to the LOLS bit in ICS status register (ISC_S [LOLS] = 1).
Note: Each MCU wafer is slightly different, each MCU has a different trim value for the same frequency. The
0x50 trim value does not represent all KEA64 ICS output 39.0625KHz.

3.3 Example

The following code is an example to configure the bus at 20 MHz

For KEA128 and KEA8

 void Clk_Init()
 {
 ICS_C1|=ICS_C1_IRCLKEN_MASK; /* Enable the internal reference clock*/
 ICS_C3= 0x90; /* Reference clock frequency = 31.25 kHz*/
 while(!(ICS_S & ICS_S_LOCK_MASK)); /* Wait for PLL lock, now running at 40
 MHz (1280
 *31.25 kHz) */
 ICS_C2|=ICS_C2_BDIV(1) ; /*BDIV=2, Bus clock = 20 MHz*/
 ICS_S |= ICS_S_LOCK_MASK ; /* Clear Loss of lock sticky bit */
 }

For KEA64

 void Clk_Init()
 {
 ICS_C1|=ICS_C1_IRCLKEN_MASK; /* Enable the internal reference clock*/
 ICS_C3= 0x50; /* Reference clock frequency = 31.25 kHz*/
 while(!(ICS_S & ICS_S_LOCK_MASK)); /* Wait for PLL lock, now running at 40
 MHz (1024
 *39.0625 kHz) */
 ICS_C2|=ICS_C2_BDIV(1) ; /*BDIV=2, Bus clock = 20 MHz*/
 ICS_S |= ICS_S_LOCK_MASK ; /* Clear Loss of lock sticky bit */
 }

For the software labs that are in the zip file, the function Clk_Init () initialize the clock to run at 20 MHz using the
internal reference oscillator. The function can be found in the CLK.c file.

4 General Purpose Input/Output (GPIO)

This section gives a brief explanation to the GPIO module of the KEA device. In Section 4.2, you will learn how
to configure the GPIO to work as output or input. Also you will be able to set, clear and toggle an output. An

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
5 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

example is included at the end of the section, the example sets or clears an output depending on the logic state
of an input.

4.1 Description

The GPIO data direction and output data registers control the direction and output data of each pin when the pin
is configured for the GPIO function. The GPIO input data register displays the logic value on each pin when the
pin is configured for any digital function, provided the corresponding Port Control and Interrupt module for that
pin is enabled.

The GPIO includes efficient bit manipulation of the general-purpose outputs through the addition of set, clear,
and toggle write-only register for each port output data register.

In this device, each 8-bit port pin is mapped to the 32-bit GPIO/FGPIO registers as described in the following
table.

Port Pin Register Bit

PTD7 31

PTD6 30

PTD5 29

PTD4 28

PTD3 27

PTD2 26

PTD1 25

PTD0 24

PTC7 23

PTC6 22

PTC5 21

PTC4 20

PTC3 19

PTC2 18

PTC1 17

PTC0 16

PTB7 15

PTB6 14

PTB5 13

PTB4 12

PTB3 11

PTB2 10

PTB1 9

PTB0 8

PTA7 7

Table 2. GPIOA/FGPIOA register bits assignment

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
6 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

Port Pin Register Bit

PTA6 6

PTA5 5

PTA4 4

PTA3 3

PTA2 2

PTA1 1

PTA0 0

Table 2. GPIOA/FGPIOA register bits assignment...continued

Port Pin Register Bit

PTH7 31

PTH6 30

PTH5 29

PTH4 28

PTH3 27

PTH2 26

PTH1 25

PTH0 24

PTG7 23

PTG6 22

PTG5 21

PTG4 20

PTG3 19

PTG2 18

PTG1 17

PTG0 16

PTF7 15

PTF6 14

PTF5 13

PTF4 12

PTF3 11

PTF2 10

PTF1 9

PTF0 8

PTE7 7

PTE6 6

PTE5 5

Table 3. GPIOB/FGPIOB register bits assignment

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
7 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

Port Pin Register Bit

PTE4 4

PTE3 3

PTE2 2

PTE1 1

PTE0 0

Table 3. GPIOB/FGPIOB register bits assignment...continued

Port Pin Register Bit

Reserved 31

Reserved 30

Reserved 29

Reserved 28

Reserved 27

Reserved 26

Reserved 25

Reserved 24

Reserved 23

Reserved 22

Reserved 21

Reserved 20

Reserved 19

Reserved 18

Reserved 17

Reserved 16

Reserved 15

Reserved 14

Reserved 13

Reserved 12

Reserved 11

Reserved 10

Reserved 9

Reserved 8

Reserved 7

PTI6 6

PTI5 5

PTI4 4

PTI3 3

Table 4. GPIOC/FGPIOC register bits assignment

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
8 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

Port Pin Register Bit

PTI2 2

PRI1 1

PTI0 0

Table 4. GPIOC/FGPIOC register bits assignment...continued

For the general purpose inputs, the logic state of each pin is available via the port data input registers, provided
the pin is configured for a digital function and the corresponding port control and interrupt module is enabled.

For the general purpose outputs, the logic state of each pin can be controlled via the port data output registers
and port data direction registers, provided the pin is configured for the GPIO function. The following table
depicts the conditions for a pin to be configured as input/output.

IF Then

A pin is configured for the GPIO function and the
Corresponding port data direction register bit is clear.

The pin is configured as an input.

A pin is configured for the GPIO function and the
Corresponding port data direction register bit is set.

The pin is configured as an output and the logic state if the
pin is equal to the Corresponding port data output register.

Table 5. GPIO conditions.

4.2 Configuration steps

To configure a GPIO pin as an input, perform the following steps.

• Clear the corresponding bit in the port data direction register (GPIOx_PDDR).
• Enable the pin as input, by clearing the corresponding bit in port input disable register (GPIOx_PIDR).
• Enable internal pullup resistor if necessary, by setting the corresponding bit in port pullup enable register

(PORT_PUEx).

To configure a GPIO pin as output, perform the following steps.

• Set the corresponding bit in port data direction register (GPIOx_PDDR).
• Disable the pin as input, by setting the corresponding bit in port input disable register (GPIOx_PIDR). All pins

disable the input by default after reset.

To set an output pin to logic 1, perform the following step

• Set the corresponding bit in port set output register (GPIOx_PSOR)

To clear an output pin to logic 0, perform the following step

• Set the corresponding bit in port clear output register (GPIOx_PCOR)

To toggle an output pin to its inverse logic state, perform the following step

• Set the corresponding bit in port toggle output register (GPIOx_PTOR)

4.3 Example

The following example shows the functionality of the GPIO port.

For TRK-KEA128

 int main(void)

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
9 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

 {
 GPIOA_PDDR|= 0 << 24; /*Set pin in port PTD0 as input*/
 GPIOA_PIDR ^=1<<24; /* Enable input in port PTD0*/
 PORT_PUE0 |= 0<<24; /* No internal pullup */
 GPIOA_PDDR|=1 <<16; /* Set pin in port PTC0 as output*/
 for(;;) {
 if((GPIOA_PDIR & GPIO_PDIR_PDI(0x1000000)) >> 24) /*If input in port PTD0
 has
 logic 1*/
 {
 GPIOA_PSOR |= 1<<16; /* Set output in port PTC0*/
 }
 else /*If input in port PTD0 has logic 0*/
 {
 GPIOA_PCOR |= 1<<16; /* Clear output in port PTC0*/
 }
 }
 return 0;
 }

For TRK-KEA64

 int main(void)
 {
 GPIOA_PDDR|= 0 << 24; /*Set pin in port PTD0 as input*/
 GPIOA_PIDR ^=1 <<24; /* Enable input in port PTD0*/
 PORT_PUEL |= 0 <<24; /* No internal pullup */
 GPIOA_PDDR|=1 <<16; /* Set pin in port PTC0 as output*/
 for(;;) {
 if((GPIOA_PDIR & GPIO_PDIR_PDI(0x1000000)) >> 24) /*If input in port PTD0
 has
 logic 1*/
 {
 GPIOA_PSOR |= 1 <<16; /* Set output in port PTC0*/
 }
 else /*If input in port PTD0 has logic 0*/
 {
 GPIOA_PCOR |= 1 <<16; /* Clear output in port PTC0*/
 }
 }
 return 0;
 }

For TRK-KEA8

 int main(void)
 {
 int counter = 0;
 GPIOA_PDDR|= 0 <<20; /*Set pin in port PTC4 as input*/
GPIOA_PIDR ^=1 <<20; /* Enable input in port PTC4*/
 PORT_PUEL |= 0 <<20; /* No internal pullup */
 GPIOA_PDDR|=1 <<16; /* Set pin in port PTC0 as output*/
 for(;;) {
if((GPIOA_PDIR & GPIO_PDIR_PDI(0x100000)) >> 20)/*If input in port PTC4 has
 logic 1*/
 {
GPIOA_PSOR |= 1<<16; /* Set output in port PTC0*/

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
10 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

 }
else /*If input in port PTC4 has logic 0*/
{
GPIOA_PCOR |= 1<<16; /* Clear output in port PTC0*/
}
}
return 0;
}

Software labs include a GPIO.h file, where macros for configuring GPIO pins as input or output are included.

5 Lab 1 : Universal Asynchronous Receiver/Transmitter (UART)

This section demonstrates how to configure and use the UART module to receive and send characters, using
hardware interrupts and software polling. A software lab is included to demonstrate the UART functionality,
TRK-KEA128_Lab1, TRK-KEA64_Lab1, and TRK-KEA8_Lab1. This first lab uses the OpenSDA port to
communicate via UART channel 2 on KEA128 and KEA64 MCU, and via UART channel 0 on KEA8. This lab
waits for characters sent from a PC terminal and echoes the received data at a baud rate of 9600, any PC
terminal can be used. In Section 5.2, you will be able to configure the UART module to receive and send data.

5.1 Description

The Kinetis EA includes up to three UART channels. Some of the UART module features are: full-duplex,
standard non-return-to-zero (NRZ) format, double-buffered transmitter and receiver with separate enable,
interrupts for transmit data register empty and receive data register full, programmable baud rates,
programmable 8-bit or 9-bit character length, and programmable 1-bit or 2-bit stop bits.

The clock source for the UART baud rate generator is the bus-rate clock. The following figure shows how to
calculate the baud rate generation.

Figure 2. UART baud rate generation

To enable the transmitter in UART, the TE bit in UART control register 2 (UART_C2 [TE]) must be set. The
transmitter remains idle until data is available in the transmit buffer. Programs store data into the transmit data
buffer by writing the UART data register (UART_D). Always read UART status register 1 (UART_S1) before
writing to UART_D to allow data to be transmitted. Hardware interrupt or software polling can be used to send
data through the UART module.

To enable the transmit interrupt, set the TIE bit in UART control register 2 (UART_C2 [TIE]). Transmit data
register empty (UART_S1 [TDRE]) indicates when there is room in the transmit data buffer to write another
transmit character to UART_D. Every time that UART_S1 [TDRE] is set an interrupt will be requested.

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
11 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

Every time a data transmit is completed, a hardware interrupt can be requested. To enable this interrupt, the
transmit complete interrupt enable bit (UART_C2 [TCIE]) must be set. The transmit complete bit (UART_S1
[TC]) indicates that the transmitter has finished transmitting all data, when this bit is set, a hardware interrupt will
be generated.

Instead of hardware interrupts, software polling may be used to monitor the transmit data register empty
UART_S1 [TDRE] and the transmit complete UART_S1 [TC] status flags if the corresponding interrupts flags,
UART_C2 [TIE] and UART_C2 [TCIE] are clear.

To enable the receiver in UART, the RE bit in UART control register 2 (UART_C2 [RE]) must be set. Character
frames consist of a start bit of logic 0, eight (or nine) data bits (lsb first), and one (or two) stop bits of logic 1.
When the receive data register is full (UART_S1 [RDRF] = 1), it gets the data from the receive data register
by reading UART_D. There are two ways that user can manage received data, software polling and hardware
interrupts.

To use the receive interrupt the enable RIE bit in UART control register 2 (UART_C2 [RIE]) must be set. Every
time when the receive data register (UART_S1 [RDRF] = 1) is full, a hardware interrupt will be requested. At
the hardware interrupt service routine (ISR), the UART_S1 [RDRF] flag is cleared by reading UART_S1 register
while UART_S1 [RDRF] is set and then reading UART_D.

When using polling, this sequence is naturally satisfied in the normal course of the user program. At polling, the
UART_C2 [RIE] bit must be clear.

5.2 Configuration steps

To initialize the UART module, perform the following steps.

• Enable bus clock in the UART module channel that will be used, by setting the UARTx bit in the System clock
gating control register (SIM_SCGC[UARTx] = 1).

• Select the number of stop bits for serial communication by setting/clearing the stop bit number select in UART
baud rate registers high UARTx_BDH [SBNS]). Clearing the bit will select one stop bit and setting the bit will
select two stop bits.

• Select the desired baud rate by writing a value in UART baud rate register low and high (UARTx_BDL and
UARTx_BDH). Remember to use the equation in Figure 2.

• Select 8-bit/9-bit format by clearing /setting the mode select bit in UART control register 1 (UARTx_C1 [M]).
Clearing the bit will select 8-bit format and setting the bit will select 9-bit format.

• Enable/ disable parity bit in UART control register 1 (UARTx_C1 [PE]).
• Enable transmitter and receiver by setting transmit enable bit and receive enable bit in UART control register

2 (UARTx_C2 [TE] = 1 and UARTx_C2 [RE] = 1).
• If transmit and/or receive interrupts are desired, enable them by setting the transmit interrupt enable bit,

transmission complete interrupt enable bit, and receiver interrupt enable bit in UART control register 2
(UARTx_C2 [TIE] = 1,UARTx_C2 [TCIE] = 1 and UARTx_C2 [RIE] = 1).

To enable the UART interrupt in the Kinetis EA MCU device, the interrupt set enable register (NVIC[ISER])
and the interrupt clear pending register [(NVIC[ICPR]) register from NVIC must be set accordingly to the IRQ
number in the vector interrupt assignment table in the reference manual.

5.3 Example

The following code shows how to initialize the UART module in the, assuming a bus speed of 20 MHz. In
this code a baud rate of 9600 is selected, one stop bit is used, 8-bit format is selected, parity is disabled, and
receiver interrupt is enabled.

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
12 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

For TRK-KEA128 and TRK-KEA64

 void UART_Init ()
 {
 SIM_SCGC |= SIM_SCGC_UART2_MASK; /* Enable bus clock in UART2*/
 UART2_BDH = 0; /* One stop bit*/
 UART2_BDL = 128; /* Baud rate at 9600*/
 UART2_C1 = 0; /* No parity enable,8-bit format*/
 UART2_C2 |= UART_C2_TE_MASK; /* Enable Transmitter*/
 UART2_C2 |= UART_C2_RE_MASK; /* Enable Receiver*/
 UART2_C2 |= UART_C2_RIE_MASK; /* Enable Receiver interrupts*/
 }
 The code below shows how to send data using polling, in this case the number
 1 will be sent.
 while((UART2_S1 & UART_S1_TDRE_MASK)==0); /* Wait for transmit buffer to
 be empty*/
 (void)UART2_S1; /* Read UART2_S1 register*/
 UART2_D= '1'; /* Send data*/

The following code shows how to handle received data at the interrupt service routine.

 void UART2_SCI2_IRQHandler ()
 {
 char data=0;
 (void)UART2_S1; /* Clear reception flag mechanism*/
 data=UART2_D; /* Receive data*/
 }

To enable UART2 interrupt follow the code below.

 /* Set the ICPR and ISER registers accordingly */
 NVIC_ICPR |= 1 <<14; /* 14 is the IRQ number of UART2 interrupt*/
 NVIC_ISER |= 1 <<14; /* 14 is the IRQ number of UART2 interrupt*/

For TRK-KEA8

void UART_Init()
 {
 SIM_SCGC |= SIM_SCGC_UART0_MASK; /* Enable bus clock in UART0*/
 UART0_BDH = 0; /* One stop bit*/
 UART0_BDL = 128; /* Baud rate at 9600*/
 UART0_C1 = 0; /* No parity enable,8-bit format*/
 UART0_C2 |= UART_C2_TE_MASK; /* Enable Transmitter*/
 UART0_C2 |= UART_C2_RE_MASK; /* Enable Receiver*/
 UART0_C2 |= UART_C2_RIE_MASK; /* Enable Receiver interrupts*/
}

The code below shows how to send data using polling, in this case the number 1 will be sent.

 while((UART0_S1&UART_S1_TDRE_MASK)==0); /* Wait for transmit buffer to be
 empty*/
 (void)UART0_S1; /* Read UART0_S1 register*/

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
13 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

 UART0_D= '1' ; /* Send data*/

The following code shows how to handle received data at the interrupt service routine.

void UART0_SCI0_IRQHandler ()
 {
 char data=0;
 (void)UART0_S1; /* Clear reception flag mechanism*/
 data=UART0_D; /* Receive data*/
 }

To enable UART0 interrupt follow the code below.

/* Set the ICPR and ISER registers accordingly
 NVIC_ICPR |= 1 <<12; /* 12 is the IRQ number of UART0 interrupt*/
 NVIC_ISER |= 1 <<12; /* 12 is the IRQ number of UART0 interrupt*/

In the software lab 1, the UART.c and UART.h files include the configuration, send, receive, and interrupt
functions for the serial communication.

6 Lab 2: FlexTimer module (FTM)

The purpose of this lab is that you learn how to configure the FlexTimer Module (FTM) as an output compare to
generate periodical interrupts at desired frequencies. A software lab is included as an example to demonstrate
the capabilities of the FTM. This second lab, TRK-KEA128_Lab2, TRK-KEA64_Lab2, and TRK-KEA8_Lab2
toggles the 4 LEDs included in the TRK-KEA board at a different frequencies, which is configurable using the
FTM.

6.1 Description

The FlexTimer Module is a timer that supports input capture, output compare, and generation of PWM signals to
control electric motors and power management applications. The FTM timer is a 16-bit counter that can be used
as an unsigned or signed counter.

In output compare mode, the FTM can generate timed pulses with programmable position, polarity, duration,
and frequency. When the counter matches the value in the channel value (CnVH and CnVL) registers of an
output compare channel, an interrupt is generated.

6.2 Configuration Steps

To configure the FTM as an output compare, perform the following steps.

• Enable bus clock in the FTM that will be used, by setting the FTMx bit in the System clock gating control
register (SIM_SCGC[FTMx] = 1).

• Select a prescaler for the FTM channel by writing a value to the prescale factor selection bit in FTM status and
control register (FTMx_SC [PS]). Remember that this bit can be written only when FTMx_MODE[WPDIS] = 1.
This value will determine the frequency at which the 16-bit FlexTimer counter will increase by one.

• Enable the interrupt for the FTM channel by setting the channel interrupt enable bit in FTM channel status and
control register (FTMx_CnSC [CHIE] = 1).

• Select the channel operation mode. For output compare mode, write a 1 at the channel mode select MSA bit
in FTM channel status and control register (FTMx_CnSC [MSA] = 1).

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
14 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

• To select the frequency of the interrupt, write a value in FTM channel value register (FTMx_CnV). Every time
the FlexTimer counter reaches this value, an interrupt will be generated.

• Finally select the clock source selection in FTM status and control register (FTMx_SC [CLKS]). Remember
that this bit is write protected, it can be written only when MODE [WPDIS] = 1.

To enable the FTM interrupt in the Kinetis EA MCU device, the interrupt set enable register (NVIC[ISER]) and
the interrupt clear pending register [(NVIC[ICPR]) from NVIC must be set accordingly to the IRQ number in the
Vector interrupt assignment table in the reference manual.

At the FTM interrupt service routine (ISR), the following steps must be done.

• Clear the interrupt channel flag by reading FTM channel status and control register (FTMx_CnSC) while
channel flag is set and then writing a 0 to the channel flag bit in FTM channel status and control register
(FTMx_CnSC [CHF] = 0).

• Refresh the frequency of the interrupt in the Channel value register (FTMx_CnV).
• Write desired code.

6.3 Example

The following code shows an example to configure the FTM2 channel 0 as an output compare to generate an
interrupt every 100 ms in the, assuming that clock bus is at 20 MHz.

For TRK-KEA128, TRK-KEA64 and TRK-KEA8

 void FTM_Init()
 {
 SIM_SCGC |= SIM_SCGC_FTM2_MASK; /* Enable Clock for FTM2 */
 FTM2_SC |= FTM_SC_PS(7); /* Select prescaler in this case 128*/
 FTM2_C0SC |= FTM_CnSC_CHIE_MASK; /* Enable channel 0 interrupt */
 FTM2_C0SC |= FTM_CnSC_MSA_MASK; /* Channel as Output compare mode */
 FTM2_C0V = 15625 ; /*Period every 100 ms*/
 FTM2_SC |= FTM_SC_CLKS(1); /*FTM2 use system clock, bus clock at 20 MHz*/
 }

The following code shows how to handle the interrupt service routine of the FTM. In this case the interrupt flag
is cleared, the new timeout is set, and the LED at port C0 is toggled.

 void FTM2_IRQHandler()
 {
 if (1==((FTM2_C0SC & FTM_CnSC_CHF_MASK)>>FTM_CnSC_CHF_SHIFT))/* Check CHF
 flag
 */
 {
 (void)FTM2_C0SC; /* Read to clear flag */
 FTM2_C0SC ^= FTM_CnSC_CHF_MASK; /* Clear flag */
 FTM2_C0V = FTM2_C0V + 15625; /* Refresh interrupt period */
 GPIOA_PTOR |=1<<16; /* LED Toggle at port C0*/
 }
 }

To enable FTM2 interrupt follow the code below.

 /* Set the ICPR and ISER registers accordingly */
 NVIC_ICPR |= 1 <<19; /* 19 is the IRQ number of FTM2 interrupt*/

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
15 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

 NVIC_ISER |= 1 <<19; /* 19 is the IRQ number of FTM2 interrupt*/

In the software lab 2, the FTM.c and FTM.h files include the configuration and interrupt functions to toggle the
four LEDs.

7 Lab 3: Analog-to-digital converter (ADC)

Through this third lab, you will learn how to initialize the Analog-to-digital converter (ADC) of the Kinetis EA
series MCUs. A software lab is included, TRK-KEA128_Lab3 and TRK-KEA64_Lab3, and TRK-KEA8_Lab3
where the ADC is configured to read the voltage of the light sensor included in the TRK-KEA board. The ADC
value is displayed in a binary form in the 4 LEDs that are included with the board.

7.1 Description

The 12-bit analog-to-digital converter is a successive approximation ADC designed for operation within an
integrated microcontroller system-on-chip. The ADC has up to 16 external analog inputs, external pin inputs,
and 5 internal analog inputs including internal bandgap, temperature sensor, and references.

The ADC can perform an analog-to-digital conversion on any of the software selectable channels. In 12, 10, and
8-bit mode, the selected channel voltage is converted by a successive approximation algorithm into a 12, 10 or
8-bit digital result.

When a conversion is completed, the result is placed in data registers (ADC_R). The conversion complete flag
(ADC_SC1 [COCO]) is then set and an interrupt is generated if the conversion complete interrupt has been
enabled (ADC_SC1 [AIEN] = 1).

The ADC module is disabled during rest or when the ADC_SC1[ADCH] bits are all high.

7.2 Configuration steps

To initialize the ADC, perform the following steps.

• Enable bus clock in the ADC module, by setting the ADC bit in the System clock gating control register
(SIM_SCGC[ADC] = 1).

• Update ADC status and control register 3 (ADC_SC3) to select the input clock source and the divide
ratio used to generate the internal clock. The input clock is selected in the input clock select bits
(ADC_SC3[ADICLK]). The divide ratio is selected in the clock divide select bits (ADC_SC3[ADIV]).

• Select hardware or software conversion trigger by setting or clearing the conversion trigger select bit in ADC
status and control register 2 (ADC_SC2 [ADTRG]).

• Enable or disable compare function by setting or clearing its bit in ADC status and control register 2
(ADC_SC2 [ACFE]).

• Ensure that ADC is enabled by writing a 0b00000 value to the ADCH bits in the ADC status and control
register 1 (ADC_SC1[ADCH]).

• Select whether conversions will be continuous or completed only once in the continuous conversion enable bit
in ADC status and control register 1 (ADC_SC1[ADCO]).

• Enable or disable conversion complete interrupts by setting or clearing the interrupt enable bit in ADC status
and control register 1 (ADC_SC1[AIEN]).

• Enable the ADC pin by writing a 1 to the desired ADC pin control bit in ADC pin control register 1 or 2
depending on the desired pin (ADC_APCTL1, ADC_APCTL2). The pin control registers disable the I/O port
control of the pins used as analog inputs.

• Select the resolution of the ADC by writing a value to the MODE bit in ADC status and control register 3
(ADC_SC3 [MODE]). By default 8-bit resolution is selected.

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
16 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

To read the ADC values, perform the following steps.

• Set the channel to read, by writing a channel value to the input channel select bits in ADC status and control
register 1 (ADC_SC1[ADCH]).

• Wait for conversion to complete. When the conversion complete flag bit is set at ADC status and control
register 1 (ADC_SC1 [COCO]), user can read the ADC conversion result.

• Read ADC conversion result registers (ADC_R).

7.3 Example

The following example shows how to initialize the ADC and read the resulting value of the conversion.

For TRK-KEA128 and TRK-KEA8

 void ADC_Init(char channel)
 {
 SIM_SCGC |= SIM_SCGC_ADC_MASK; /* Enable bus clock in ADC*/
 ADC_SC3 |= ADC_SC3_ADICLK(0b00); /* Bus clock selected*/
 ADC_SC2 |= 0x00; /* Software Conversion trigger, disable compare function*/
 ADC_SC1 = 0 ; /* Enable ADC by setting ADCH bits as low*/
 ADC_SC1|= ADC_SC1_ADCO_MASK; /* Continuous mode operation */
 ADC_APCTL1 |= ADC_APCTL1_ADPC(1<<channel); /* Channel selection */
 ADC_SC3 |= ADC_SC3_MODE(0b000); /* 8-bit mode operation */
 }
 int ADC_Read(char channel)
 {
 ADC_SC1 |= ADC_SC1_ADCH(channel); /* Select channel to read */
 while(!(ADC_SC1 & ADC_SC1_COCO_MASK)); /* Wait conversion to complete */
 return ADC_R; /* Return adc value */
 }

 For TRK-KEA64
 void ADC_Init(char channel)
 {
 SIM_SCGC |= SIM_SCGC_ADC_MASK; /* Enable bus clock in ADC*/
 ADC_SC3 |= ADC_SC3_ADICLK(0b00); /* Bus clock selected*/
 ADC_SC2 |= 0x00; /* Software Conversion trigger, disable compare function*/
 ADC_SC2 |=ADC_SC2_REFSEL(0b01); /* Select VDD and VSS as voltage reference
 source*/
 ADC_SC1 = 0 ; /* Enable ADC by setting ADCH bits as low*/
 ADC_SC1|= ADC_SC1_ADCO_MASK; /* Continuous mode operation */
 ADC_APCTL1 |= ADC_APCTL1_ADPC(1<<channel); /* Channel selection */
 ADC_SC3 |= ADC_SC3_MODE(0b000); /* 8-bit mode operation */
 }
 int ADC_Read(char channel)
 {
 ADC_SC1 |= ADC_SC1_ADCH(channel); /* Select channel to read */
 while(!(ADC_SC1 & ADC_SC1_COCO_MASK)); /* Wait conversion to complete */
 return ADC_R; /* Return adc value */
 }

In the software lab 3, the ADC.c and ADC.h files include the initialization and read functions for the ADC.

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
17 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

8 Lab 4: Keyboard interrupts (KBI)

This fourth lab demonstrates how to initialize and use the Keyboard Interrupts (KBI). A software lab is included,
TRK-KEA128_Lab4, TRK-KEA64_Lab4, and TRK-KEA8_Lab4. In this lab, the two buttons, that are included in
the TRK-KEA board, are used to toggle two LEDs using KBI.

8.1 Description

This on-chip peripheral module is called a keyboard interrupt module because it was originally designed to
simplify the connection and use of row-column matrices of keyboard switches. However, these inputs are also
useful as extra external interrupt inputs and as an external means of waking the MCU from stop or wait low-
power modes.

Some of the features of the KBI are: Up to 32 keyboard interrupt pins with individual pin enable bits, one
software-enabled keyboard interrupt, enable pullup resistor, independent edge sensitivity selection, and exit
from low-power modes.

8.2 Configuration steps

To initialize the keyboard interrupts, perform the following steps.

• Enable bus clock in the KBI channel module, by setting the KBIx channel bit in the System clock gating control
register (SIM_SCGC[KBIx] = 1).

• Mask keyboard interrupts by clearing the interrupt enable bit in KBI status and control register (KBIx_SC
[KBIE] = 0).

• Choose the KBI polarity by writing the edge select bit in KBI edge select register (KBIx_ES [KBEDG]).
• Enable internal pull up resistor in Port pullup enable register 0 or 1 (PORT_PUEx), if necessary.
• Enable the Keyboard interrupt channel by setting the pin enable bit in KBI pin enable register (KBIx_PE

[KBIPE] = 1).
• Clean all flags by setting the KBI acknowledge bit in KBI status and control register (KBIx_SC [KBACK] = 1),

to avoid any false interrupts.
• Write to KBIx_SC[RSTKBSP] to clear KBIx_SP for any false. This step only applies for KEA128, for KEA64

and KEA8 skip this step.
• Enable Keyboard interrupts by setting the interrupt enable bit in KBI status and control register (KBIx_SC

[KBIE] = 1).

To enable the KBI interrupt in the Kinetis EA MCU device, the interrupt set enable register (NVIC[ISER]) and the
interrupt clear pending register [(NVIC[ICPR]) register from NVIC must be set accordingly to the IRQ number in
the Vector interrupt assignment table in the reference manual.

For the interrupt, perform the following steps.

• Clear the interrupt flag and set the acknowledge bit in KBI status and control register (KBIx_SC [KBACK] = 1).
• Read the KBI source pin register, to check the KBI channel that has been activated.

8.3 Example

The following code shows how to initialize the KBI interrupts in channel 24 with falling edge. At the interrupt, a
LED in port C0 is toggled.

For TRK-KEA128

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
18 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

 void KBI_Init()
 {
 SIM_SCGC |= SIM_SCGC_KBI0_MASK; /* Enable bus clock on KBI0 */
 KBI0_SC = 0; /* Clearing mechanism */
 KBI0_ES |= KBI_ES_KBEDG(0x1000000);/* Polarity setting, falling edge low
 level ,SW1 */
 PORT_PUE0=0; /* No internal pullup*/
 KBI0_PE |= KBI_PE_KBIPE(0x1000000); /* Enable KBI0 channel 24 , SW1 */
 KBI0_SC = 0; /* Clearing flags and RSTKBSP bit */
 KBI0_SC |= KBI_SC_KBIE_MASK; /* Enable KBI0 Interrupts */
 }
 void KBI0_IRQHandler()
 {
 KBI0_SC |= KBI_SC_KBACK_MASK; /*Clear flag*/
 if((KBI0_SP & KBI_SP_SP(0x1000000))) /* If SW1 has been pressed */
 {
 GPIOA_PTOR |=1<<16; /* LED Toggle at port C0*/
 }
 }

To enable KBI0 interrupt follow the code below.

 /* Set the ICPR and ISER registers accordingly */
 NVIC_ICPR |= 1 <<24; /* 24 is the IRQ number of KBI0 interrupt*/
 NVIC_ISER |= 1 <<24; /* 24 is the IRQ number of KBI0 interrupt*/

For TRK-KEA64

 void KBI_Init()
 {
 SIM_SCGC |= SIM_SCGC_KBI1_MASK; /* Enable bus clock on KBI1 */
 KBI1_SC = 0; /* Clearing mechanism */
 KBI1_ES |= KBI_ES_KBEDG(1);/* Polarity setting, falling edge low level ,SW1
 */
 PORT_PUEL=0; /* No internal pullup*/
 KBI1_PE |= KBI_PE_KBIPE(1); /* Enable KBI1 channel 0 , SW1 */
 KBI1_SC = 0; /* Clearing flags and RSTKBSP bit */
 KBI1_SC |= KBI_SC_KBIE_MASK; /* Enable KBI1 Interrupts */
 }
 void KBI1_IRQHandler()
 {
 KBI1_SC |= KBI_SC_KBACK_MASK; /*Clear flag*/
 if((GPIOA_PDIR & GPIO_PDIR_PDI(0x1000000))) /* If SW1 has been pressed */
 {
 GPIOA_PTOR |=1<<16; /* LED Toggle at port C0*/
 }
 }

For TRK-KEA8

void KBI_Init()
{
 SIM_SCGC |= SIM_SCGC_KBI1_MASK; /* Enable bus clock on KBI1 */
 KBI1_SC = 0; /* Clearing mechanism */
 KBI1_ES |= KBI_ES_KBEDG(1);/* Polarity setting, falling edge low level ,SW1 */
 PORT_PUEL=0; /* No internal pullup*/

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
19 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

 KBI1_PE |= KBI_PE_KBIPE(1); /* Enable KBI1 channel 0 , SW1 */
 KBI1_SC = 0; /* Clearing flags and RSTKBSP bit */
 KBI1_SC |= KBI_SC_KBIE_MASK; /* Enable KBI1 Interrupts */
}
void KBI1_IRQHandler()
{
 KBI1_SC |= KBI_SC_KBACK_MASK; /*Clear flag*/
 if((GPIOA_PDIR & GPIO_PDIR_PDI(0x100000))>>20) /* If SW1 has been pressed */
 {
 GPIOA_PTOR |=1<<16; /* LED Toggle at port C0*/
 }
}

To enable KBI1 interrupt follow the code below.

 /* Set the ICPR and ISER registers accordingly */
 NVIC_ICPR |= 1 <<25; /* 24 is the IRQ number of KBI1 interrupt*/
 NVIC_ISER |= 1 <<25; /* 24 is the IRQ number of KBI1 interrupt*/

In the software lab 4, the KBI.c and KBI.h files include the initialization and interrupt functions for KBI.

9 References

The following references are available at nxp.com.

• KEA128 Reference Manual, Rev 1, 01/2014 available at nxp.com/KEA
• KEA64 Reference Manual, Rev 1, 01/2014 available at nxp.com/KEA
• KEA8 Reference Manual, Rev 1, 01/2014 available at nxp.com/KEA

10 Revision history

Document ID Release date Description

AN4942 v. 1.0 29 May 2024 Added a note in Section 3.2

AN4942 v. 0 May 2014 Initial release

Table 6. Revision history

11 Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
20 / 23

http://www.nxp.com
http://www.nxp.com/KEA
http://www.nxp.com/KEA
http://www.nxp.com/KEA
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
21 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Suitability for use in automotive applications — This NXP product has
been qualified for use in automotive applications. If this product is used
by customer in the development of, or for incorporation into, products or
services (a) used in safety critical applications or (b) in which failure could
lead to death, personal injury, or severe physical or environmental damage
(such products and services hereinafter referred to as “Critical Applications”),
then customer makes the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, safety,
and security related requirements concerning its products, regardless of
any information or support that may be provided by NXP. As such, customer
assumes all risk related to use of any products in Critical Applications and
NXP and its suppliers shall not be liable for any such use by customer.
Accordingly, customer will indemnify and hold NXP harmless from any
claims, liabilities, damages and associated costs and expenses (including
attorneys’ fees) that NXP may incur related to customer’s incorporation of
any product in a Critical Application.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

AN4942 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

Application note Rev. 1.0 — 12 June 2024 Document feedback
22 / 23

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

NXP Semiconductors AN4942
Getting Started with Kinteis EA series MCUs

Contents
1 Overview ...2
2 Introduction .. 2
3 Internal clock source (ICS) 3
3.1 Description ...3
3.2 Configuration steps ..4
3.3 Example ...5
4 General Purpose Input/Output (GPIO) 5
4.1 Description ...6
4.2 Configuration steps ..9
4.3 Example ...9
5 Lab 1 : Universal Asynchronous

Receiver/Transmitter (UART) 11
5.1 Description ... 11
5.2 Configuration steps ..12
5.3 Example ...12
6 Lab 2: FlexTimer module (FTM)14
6.1 Description ... 14
6.2 Configuration Steps ... 14
6.3 Example ...15
7 Lab 3: Analog-to-digital converter (ADC) 16
7.1 Description ... 16
7.2 Configuration steps ..16
7.3 Example ...17
8 Lab 4: Keyboard interrupts (KBI) 18
8.1 Description ... 18
8.2 Configuration steps ..18
8.3 Example ...18
9 References ..20
10 Revision history ...20
11 Note about the source code in the

document ..20
Legal information ...22

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 12 June 2024
Document identifier: AN4942

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_AN4942

	1 Overview
	2 Introduction
	3 Internal clock source (ICS)
	3.1 Description
	3.2 Configuration steps
	3.3 Example

	4 General Purpose Input/Output (GPIO)
	4.1 Description
	4.2 Configuration steps
	4.3 Example

	5 Lab 1 : Universal Asynchronous Receiver/Transmitter (UART)
	5.1 Description
	5.2 Configuration steps
	5.3 Example

	6 Lab 2: FlexTimer module (FTM)
	6.1 Description
	6.2 Configuration Steps
	6.3 Example

	7 Lab 3: Analog-to-digital converter (ADC)
	7.1 Description
	7.2 Configuration steps
	7.3 Example

	8 Lab 4: Keyboard interrupts (KBI)
	8.1 Description
	8.2 Configuration steps
	8.3 Example

	9 References
	10 Revision history
	11 Note about the source code in the document
	Legal information
	Contents

