
© 2015 Freescale Semiconductor, Inc. All rights reserved.

Relevant and Non-Relevant Code
Separation with Kinetis M
Overview and tips for using Kinetis M series MCU with reliable
measuring instruments

by: Martin Sebest

1. Introduction
This application note describes the capabilities of the
Kinetis M microcontroller devices which are to be used
in applications where reliability of the measuring
instrument must be ensured. These applications include
power meters, water meters, gas meters, heat meters,
weighing instruments, taximeters, and many other
electronic measuring applications. These devices mostly
include a microcontroller that handles billing
information and parameters that are subject to legal
control. There are several organizations which provide
advisory guidelines for writing applications for software
controlled measuring instruments. For example, the
International Organization of Legal Metrology (OIML)
is a worldwide, intergovernmental organization. The
European Cooperation in Legal Metrology (WELMEC)
is an organization that includes the legal metrology
authorities of the Member States of the European Union
which provide the rules and recommendation for legally
relevant and non-relevant software separation.

Freescale Semiconductor, Inc. Document Number: AN5141

Application Note Rev. 0 , 06/2015

Contents
1. Introduction 1
2. Basics of software separation 2

2.1. Reason to separate the software 2
2.2. Legally relevant application code 2
2.3. Legally non-relevant application code.................... 3

3. Kinetis M microcontroller series 3
3.1. ARM Cortex-M0+ core ... 5
3.2. DMA Controller Module 5
3.3. Miscellaneous Control Module 6
3.4. Memory Protection Unit.. 6
3.5. Peripheral Bridge .. 6
3.6. General Purpose Input Output Module 6
3.7. Bare Metal Drivers for Kinetis M MCUs 7

4. Application development 7
4.1. Prepare the concept ... 7
4.2. Developing the application 9
4.3. Reflashing the non-relevant part of the application13
4.4. Final application ... 15

5. Summary 17
6. References 18
7. Revision History 18
Appendix A. Main project source code…………………….19
Appendix B. Dummy project source code………………… 22

Basics of software separation

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
2 Freescale Semiconductor, Inc.

2. Basics of software separation

2.1. Reason to separate the software
Only legally relevant application code of the measuring instrument firmware is subject to legal control.
After the relevant application has been approved the manufacturer cannot modify it without re-approval.
If a software separation methodology is not implemented then the entire firmware of the device is
considered to be a legally relevant application and any modification requires a costly and
time-consuming re-approval. However, if a software separation methodology is implemented according
to the OIML and WELMEC advisory guidelines then manufacturers can modify the legally non-relevant
application without re-approval, gaining flexibility and significant cost savings.
The measuring instrument is controlled by legally relevant and legally non-relevant software
applications, as shown in this image.

Figure 1. Measuring instrument software structure

The system platform of the Kinetis M device is designed specifically to provide hardware support for
software separation within a single chip.

2.2. Legally relevant application code
The legally relevant application code ensures that billing quantities are measured by analog-to-digital
converters (ADCs), post-processed, displayed, printed, and transformed into encrypted data packets.
This application also maintains billing information, log files, and load profiles in a Non-Volatile
Memory (NVM). Certain information must be stored at predefined times so operation of the Real-Time
Clock (RTC) module is controlled by the legally relevant application.

Legally Relevant Software

LEGALLY RELEVANT SOFTWARELegally Non - Relevant Software

Software Separation
and Protection

MPU AIPS DMA MCM

GPIO
with

protection
attributes

MCU

ADC
Billing

ADC
Auxiliary

RTC

Display

Communication

Kinetis M microcontroller series

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
Freescale Semiconductor, Inc. 3

2.3. Legally non-relevant application code
Legally non-relevant applications perform all remaining software tasks including communicating
digitally-signed packets to the utilities and providing data to equipment attached to a Home Area
Network (HAN). For example, a washing machine equipped with a HAN communication interface can
be programmed to start washing automatically during non-peak hours so the consumer can take
advantage of lower electricity rates. Other smart appliances such as electric heaters can be set to turn on
oroff automatically at specified times and thus manage the peak load efficiently. The amount of legally
non-relevant code is increasing for metering instruments. The capability of a measuring instrument to
share informative data using various protocols and formats with smart appliances is becoming crucial. If
the required functionality or protocol is not supported then the manufacturer of the metering instrument
must produce it quickly and inexpensively.

3. Kinetis M microcontroller series
The Freescale Kinetis M MCU devices provide the necessary on-chip peripherals, computation
performance and power capabilities to enable development of low-cost and highly integrated metering
instruments. This is shown in the family block diagram figure below. Kinetis M MCU devices are based
on the 32-bit ARM® Cortex® M0+ core with CPU clock rates up to 75 MHz. The Measurement
Front-End is integrated on all devices. They include a highly accurate 24-bit Sigma Delta ADC,
Programmable Gain Amplifier (PGA), high precision internal 1.2 V voltage reference (VRef), Phase
Shift Compensation block, 16-bit SAR ADC and Peripheral Crossbar (XBAR). The XBAR module acts
as a programmable switch matrix allowing multiple simultaneous connections of internal and external
signals. An Accurate Independent Real Time Clock (IRTC) with passive and active tamper detection
capability is also available on all devices. The special feature of the latest chip in the Kinetis M MCU
series (KM34Z75) is the Memory Mapped Arithmetic Unit (MMAU). The MMAU provides
acceleration to a set of math operations, including signed or unsigned fractional or integer
multiplication, accumulation, division, and square-root.

Kinetis M microcontroller series

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
4 Freescale Semiconductor, Inc.

Core System Memory Measurement Front End

ARM® Cortex™ - M0+
up to 75 MHz

Watchdog 64 – 256 KB
Flash

3x HSCMP 2 – 4x 24-bit
Sigma Delta

ADC

Debug Interfaces 4x DMA 16 - 32 KB RAM 12 - 16-ch., 16 bit
SAR ADC

1 – 4x PGA

Interrupt
Controller

 Low –Leakage
Wake-Up Unit

 1.2 VRef

 XBAR

 MMAU

Security Display Timers Communication Interfaces Clocks

16/32 Cyclic
Redundancy

Checks

Up to 448LCD
Segment Driver 4x Quad Timer 2x SPI 2x I2C Phase-Locked

Loop

MPU/AIPS Up to 8
Backplane

1x Low-Power
Timer

4x UART with Flow Control
2x ISO7816

1x with HSCMP for IR

Frequency –
Locked Loop

Random Number
Generator

 2x Periodic
Interrupt Timers

Up to 99 GPIO Low/High
Frequency
Oscillators

3x Tamper
Detection from

Battery

 iRTC on vBatt
with T Comp

 Internal
Reference Clocks

Figure 2. Kinetis M MCU family block diagram

In addition to high performance analog and digital blocks, Kinetis M MCU devices are designed with an
emphasis on achieving the required software separation. They integrate hardware blocks supporting
distinct separation of the legally relevant software from other software functions. The hardware blocks
controlling or checking the access attributes include:

• ARM Cortex-M0+ Core

• DMA Controller Module

• Miscellaneous Control Module

• Memory Protection Unit

• Peripheral Bridge

• General Purpose Input-Output Module

The Kinetis M system platform supports two bus masters — these are the ARM Cortex-M0+ core and
DMA controller module. The masters can be optionally enabled or forced by the miscellaneous control
module (MCM) to generate either User or Privileged access modes [3].

Kinetis M microcontroller series

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
Freescale Semiconductor, Inc. 5

The next figure shows the hardware blocks that control access to on-chip memories and on-chip
peripherals for the ARM Cortex-M0+ core and DMA controller bus masters using Privileged Secure,
User Secure, or User Nonsecure attributes.

Figure 3. Hardware blocks with controlled access attributes

3.1. ARM Cortex-M0+ core
The ARM Cortex M0+ core provides optional privilege levels for software execution:

• Privileged: The software can use all the instructions and has access to all resources.
• Unprivileged: The software has limited access to system registers

— Cannot access the system timer, the NVIC, or the system control block.
— May have restricted access to memory or peripherals.
— Is commonly named as the User mode of execution.

Only privileged software can write to the control register to change the privilege level for software
execution in thread mode. Unprivileged software can use the SVC instruction to make a Supervisor Call
to transfer control to privileged software.
In addition to execution levels the ARM Cortex M0+ implements two stacks, the main stack and the
process stack, with independent copies of the stack pointer.

3.2. DMA Controller Module
The Kinetis M DMA Controller Module enables fast transfer of data and provides an efficient way to
move blocks of data with minimal processor interaction. The DMA Controller module has four
independent DMA channels, each with a programmable Transfer Channel Descriptor to operate in
Privileged Secure, User Secure, or User Non-secure mode. Attempts at access that are not allowed
terminate the bus cycle with an error.

Kinetis M microcontroller series

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
6 Freescale Semiconductor, Inc.

3.3. Miscellaneous Control Module
Besides traditional User or Privileged access modes, the device-specific Miscellaneous Control Module
adds an access attribute indicating a Secure or Nonsecure state based on a software-controlled process
identifier. Software or a DMA channel that executes in Privileged Secure access mode has no
restrictions and gains immediate access to the device resources. Conversely, software or a DMA access
that executes in User Secure or Nonsecure access mode has lower priority than those executing in
Privileged Secure mode. Software or DMA accesses that execute in User Secure or Nonsecure mode
cannot access the System Control Block within the core, the Nested Vectored Interrupt Controller, and
the System Timer. These basic User Secure or Nonsecure access mode restrictions are further extended
by the platform to limit access to all on-chip peripherals that are critical to chip configuration, reset
control, and power management.

3.4. Memory Protection Unit
The Memory Protection Unit provides hardware access control to on-chip flash and SRAM memories. It
features eight programmable 128-bit region descriptors. Each descriptor defines start and end addresses
and supports read, write, and execute protection attributes for bus masters and supported access modes.
This block detects access protection errors if a memory reference does not register in any memory
region, or if the reference is illegal in all of the hit memory regions. Accesses that are not allowed
generate an error termination (Hard Fault). The MPU is programmable only in Privileged access mode
and therefore is the most important unit to develop the application with software separation.

3.5. Peripheral Bridge
The Peripheral Bridge (AIPS) converts the crossbar switch interface to an interface that can access most
of the slave peripherals on this chip. It manages all bus master transactions bus cycles destined for the
attached slave devices and allows programmable unique access rights for each attached slave device.
Each peripheral slot defines read and write protection attributes for bus masters and access modes
supported by the module. Accesses that are not allowed generate a Hard Fault. The AIPS is
programmable only in Privileged access mode.

3.6. General Purpose Input Output Module
Particular emphasis has been given to access control support for the General Purpose Input/Output
Module (GPIO). Kinetis M MCU devices have GPIO pins grouped into eight pin ports. Each eight-pin
port supports read and write protection attributes for all bus masters and access modes supported by the
port. The GPIOs are accessible through the Peripheral Bridge or IOPORT, a special single-cycle
interface with the ARM Cortex-M0+ core. Attempts at illegal access through IOPORT are treated as
RAZ/WI (Read as Zero/Write Ignored), while access attempts through the Peripheral Bridge generate
errors.

Application development

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
Freescale Semiconductor, Inc. 7

3.7. Bare Metal Drivers for Kinetis M MCUs
The Freescale metering engineering group has developed the unique bare metal software drivers for the
Kinetis M series of microcontrollers. These software drivers support an optimal application development
that is provided in the source code. The bare metal drivers come with a variety of software examples.
The software examples demonstrate the correct use of the bare metal software drivers in an application.
Each peripheral driver is complemented by one or more software examples depending on the driver
complexity and number of features to be demonstrated, as shown in the next figure. For example, the
highlighted examples demonstrate the common practices of controlling access to on-chip memories and
on-chip peripherals.
The bare metal drivers for Kinetis M MCUs are available for download on the Freescale webpage
freescale.com.

Figure 4. Kinetis M bare metal drivers software examples

4. Application development
This section will show how the application with relevant and non-relevant software separation can be
developed on Kinetis M MCU devices using bare metal software drivers and IAR Embedded
Workbench IDE.

4.1. Prepare the concept
There is no strict rule regards how the relevant and the non-relevant software should look. There are
specific requirements and recommendations referenced in documents [1] [2]. The software example
discussed in this section shows a typical approach for relevant and non-relevant software separation in a

http://www.freescale.com/

Application development

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
8 Freescale Semiconductor, Inc.

simple application. It is assumed that some adjustments must be made to the application to use it in a
real application.

4.1.1. Application concept
The final application must consist of the legally relevant and the legally non-relevant parts of the
software. This means that the flash memory and RAM memory of the device must be divided into two
sections. The first section is for relevant software code and the second section is for non-relevant
software code. The size requirements of legally non-relevant software code are continuously increasing.
Two requirement must remain in effect during the entire life of the application—that is, legally relevant
code must remain and the legally relevant data must only be affected by the legally relevant code. These
requirements are fulfilled through the use of, and correct setting of, the Memory Protection Unit (MPU)
that defines eight memory regions with different protection properties.

The placement of the relevant and non-relevant parts of software code in the specific location in the
memory and creating of the memory region is defined in the linker file.

A peripheral can be setup by using the Peripheral Bridge (AIPS) when peripheral memory space can or
cannot be accessed from the relevant or the non-relevant part of the software.

Figure 5. Distribution of memory for specific parts of application

The main content of the legally relevant part of the application software is the measuring of billing
quantities by the analog-to-digital converter. It is good for this measuring to be performed in interrupts
because all interrupts are handled in a supervisor mode of execution. The remainder of the application,
the non-relevant part, is executed in the user mode of execution. The time schedule of the application is
shown in this figure.

Flash

RAM

Peripheral
Memory

MAIN SP
PROCESS SP

Vector Table

 ROM
 Relevant

 ROM
 Non-Relevant

 RAM
 Non-Relavant

 RAM
 Relevant

Define
access rights
for user and

privilege mode
of access

Application development

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
Freescale Semiconductor, Inc. 9

Figure 6. Time schedule of application with relevant and non-relevant software

After any reset condition, including Power on Reset (POR), the ARM Cortex-M0+ Core starts executing
software in Privileged Secure mode. It is necessary to initialize all discussed hardware blocks and to
program their associated access attributes. All configuration attributes can be locked by the software
until the next POR. After programming all access attributes, the measuring instrument firmware can
initiate the legally relevant and the legally non-relevant software.

4.2. Developing the application
To demonstrate the capabilities and usability of Kinetis M MCUs in applications where software
separation is necessary the following example will be used.

Table 1. Definition of example

Software part Definition Notes
Relevant Sensing voltage signal from potentiometer placed on KM

Tower System board using AD converter.
This part of the application must remain
in the same location during the entire

life of the application.
Non-Relevant Blinking with random LEDs. The frequency of blinking LEDs

changes according to the value of sensed voltage signal.
This part of the application may be
changed. For example a different

combination of LEDs may be used.
Example notes: Take into account that the legally non-relevant part of the application has the possibility to be updated later.
The legally relevant part of the application must remain unaffected.

The legally relevant part of the application is in most cases the fixed part of the application. There is
usually no need to change this part of the software if everything in this part of the application functions
well. The legally non-relevant software is the part of the application that may be requested to be changed
or updated frequently during the lifetime of the application. Therefore it is good to have a standalone
project for the relevant part of the software and a standalone project for the non-relevant software
development. Projects for the relevant part of the application and for the non-relevant part of the
application based on Kinetis M bare metal drivers are attached in the associated package with the
Application Note.

4.2.1. Project for the relevant part of software development
The legally relevant part of the application code is written in the standard project file which is created
with the project generator that is part of the Kinetis M bare metal drivers which was mentioned in
Chapter 3.7. The developer must focus only on the project linker file where the legally relevant code
and data (flash and RAM memories) must be managed with respect to the legally non-relevant code and
data capacity requirement.

The project linker file must be updated in the following way:

Application development

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
10 Freescale Semiconductor, Inc.

• Define the memory regions for the legally relevant and the legally non-relevant code and data.

• Define the memory block for the process stack pointer.

• Place the process stack pointer memory block into the legally non-relevant RAM data region.

• Place the non-relevant code and the non-relevant data into specific memory blocks.

Figure 7. Linker file for main application

The legally relevant part of the application code executes through interrupts as was mentioned in
Chapter 4.1. All interrupts are executed in privileged mode of access using the main stack pointer. The
whole non-relevant part of the application is executed in the User mode of access using the process stack

Application development

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
Freescale Semiconductor, Inc. 11

pointer. The application flowchart is in the next figure and illustrates how the legally relevant part of the
application is developed.
In this project the legally relevant and legally non relevant parts of the application may be developed at
the same time. However, if the requirement for changing the non-relevant part of the application occurs,
it is better to change it only in the project dedicated for non-relevant application (see Chapter 4.2.2).
The source code of the main application project for the solved example is in Appendix.1.

Figure 8. Application flowchart

main

 Initialization of used
peripherals

(ADC, XBAR, LPTMR,
GPIO ...)

Setup MPU regions with
specific modes of access

Setup
Process Stack Pointer

Enable Interrupts

Switch to User mode
of execution

Jump to execute
non-relevant part

of application

Executing
non-relevant part of

application

Application development

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
12 Freescale Semiconductor, Inc.

4.2.2. Project for the non-relevant part of software development
The legally non-relevant part of the application is written in the project and is derived from the standard
project. The linker file for the “dummy” project contains only necessary commands such as:

• Define the memory regions for legally non-relevant code and data

• Tell the linker to copy non-relevant data at start up time (instruction – initialize by copy)

• Place the non-relevant code and the non-relevant data into specific memory blocks

Figure 9. Linker file for “dummy” project where the legally non-relevant part of the

application may be updated

The developer of the non-relevant part of the application may use all microcontroller peripherals that a
non-relevant application can handle (according to settings in the relevant application project) otherwise
it will generate a Hard Fault after downloading to the main application. The developer must be aware of
the memory size of the non-relevant part of the application.
The flowchart in the figure below outlines the process. At startup the global variables (if any exist) are
initialized and at the end of startup the main function is called and executed. The source code for the
non-relevant part of the application for the solved example is found in Appendix 2.
After the new non-relevant part of the application is prepared the binary or s-record (s19) file must be
generated.

Application development

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
Freescale Semiconductor, Inc. 13

Figure 10. Dummy project flowchart

4.3. Reflashing the non-relevant part of the application
One of the main requirements in the application code separation topic is the ability to change the
non-relevant part of the application during the runtime. There are many ways to achieve this. The UART
periphery is used as a frontend for changing the non-relevant part of the application in the solved
example. Any other communication peripherals available on the Kinetis M MCU may be used for
reflashing the non-relevant part of the application.
In this example the new non-relevant part of the application is sent through the UART communication
interface in the form of a binary file previously generated from a “dummy” project.
The reflashing process takes place in port callback and is performed with the following steps:

1. Disable all interrupts.
2. Erase the flash memory sector which contains the non-relevant part of the application.

3. Send and receive the new, non-relevant part of the application through the MCU communication
interface (for example UART) in the form of a binary file.

4. Write the new non-relevant part of the application into the intended flash memory region.
5. Reset the process stack pointer and set the correct values for xPSR, Program Counter and Link

register stacked in process stack pointer.
6. Enable interrupts.

7. The application runs with the updated non-relevant part and the legally relevant part of the
application remains untouched.

Executing

non-relevant part of

application

Startup

main

Application development

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
14 Freescale Semiconductor, Inc.

Figure 11. Reflashing process flowchart

4.3.1. Set up the process stack pointer after reflash
When a new non-relevant part of the application is loaded the process stack pointer needs to be correctly
set up. If the process stack pointer remains unchanged the move from the interrupt handler back to the
new non-relevant application will not be successful and will generate a Hard Fault.
According to the ARM Cortex-M0+ core documentation at the exception entry the processor pushes
eight data registers onto the current stack. In this example it is the process stack. This is outlined in the
next figure.

Figure 12. Stacking frame when exception (interrupt) occurs

Enable Interrupts

Port ISR

Disable Interrupts

Erase Sector

Receive
new non-relevant

part of application
UART ...

Write to Flash

Reset
Process Stack Pointer

xPSR, PC and LR

End Port ISR

Application development

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
Freescale Semiconductor, Inc. 15

For the successful return from the reflashing process back to the start of the new non-relevant
application, the process stack address must be reinitialized and the following stacked registers of the
process stack must be correctly adjusted:

• xPSR register – Execution Program Status Register – set to 0x01000000 value.

• PC – Program Counter – set to the first address of the non-relevant application (0x00010000 in
our example).

• LR – Link Register – LR stores the return information for the subroutines, the function calls
and the interrupts (exceptions) (0x00010001 in our example).

Other stacked registers (R0 — R3, R12) do not need to be adjusted for specific values, they may remain
as they are. To handle the process stack a C-code inline macro called PSP_HANDLE (psp_add, ret_add)
was created and is used in this example.

4.4. Final application
The most important steps in the development process of the application where the legally relevant and
the legally non-relevant parts must be separate have been described in the example. The legally relevant
part of the application remains the same and cannot be modified. In case of an attempt to modify the
legally relevant software a Hard Fault will be generated.
The legally non-relevant part of the application can be modified. The new version of the non-relevant
part of the application is developed in a separate project with the specific linker file. After the modified
non-relevant part is prepared then it can be loaded into the application through one of the
microcontroller’s communication interfaces (UART, SPI, or I2C).
A special procedure must be carried out with the process stack after the reflashing process. The stacked
program status register, program counter register, and link register must be correctly adjusted before the
start of executing a new non-relevant part of the application.

Application development

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
16 Freescale Semiconductor, Inc.

Figure 13. Block diagram of solved example

In the example presented in this chapter, the relevant part of the application ensures the voltage sensing
from the potentiometer placed on the development KM34Z75M Tower System development board. The
function of the non-relevant part of the application is to control the blinking frequency and blinking
arrangement of the LEDs that are assembled on the Tower System development board according to the
actual level of sensed voltage. The non-relevant part of the application can be modified. The
modification is performed as a standalone project for non-relevant project developing. The UART
communication interface is used for loading the new non-relevant part of the application into the
microcontroller. The following figure shows the existing application being modified during its runtime.
After the non-relevant part of the application has been reflashed the application continues without the
need to perform a reset and the relevant part remains unaffected.

Linker File #1 Linker File #2

UART

Legally Relevant Software

Legally
Non-Relevant

Software

Legally
Non-Relevant

Software
Developing & Upgrading

Main Project Dummy Project

Binary File

Software Separation

Summary

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
Freescale Semiconductor, Inc. 17

Figure 14. The non-relevant part is updated, the relevant part is unaffected

5. Summary
In the previous chapters the essential characteristics of separation of legally relevant and legally
non-relevant software (or parts of the application) were explained.
Kinetis M microcontrollers are based on the ARM Cortex M0+ core which supports supervisor
(privilege) and user (non-privilege) modes of execution. A broad range of modules and extended
peripherals with controlled access attributes intended for software separation and protection like MCM,
AIPS, MPU, DMA, and GPIO are standard features of Kinetis M microcontrollers.
An example for legally relevant and legally non-relevant software separation with the possibility to
change the content of the non-relevant part of the application is shown in this application note. The
significant benefit for the application approval process is that the relevant part of the application remains
unaffected.
Kinetis M MCU devices are supported by unique bare metal drivers with an interactive reference
manual to make development easier. Several pre-compiled examples are included in the Kinetis M bare
metal drivers installation package including examples for software separation development.

Main project source code

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
18 Freescale Semiconductor, Inc.

6. References
1. General Requirements for Software Controlled Measuring Instruments, (OIML, 2008

http://workgroups.oiml.org/tcsc/tc-07/tc-07-sc-04/reference-documentation/D031-e08.pdf)
2. WELMEC 7.2, Software Guide (Measuring Instruments Directive 2004/22/EC),

(www.welmec.org/fileadmin/user_files/publications/WELMEC_07.02_Issue5_SW_2012-03-
19.pdf)

3. Kinetis M Sub-Family Reference Manual, available on freescale.com
4. Cortex-M0+ Devices - Generic User Guide, (2012 ARM,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0662b/DUI0662B_cortex_m0p_r0p1_dgug
.pdf)

5. Kinetis M Support for Distinct Separation of Legally Relevant Software, Joe Circello and Martin
Mienkina, (document KINETISMWP)

6. IAR C/C++ Development Guide, Compiling and Linking,
(http://supp.iar.com/FilesPublic/UPDINFO/005832/arm/doc/EWARM_DevelopmentGuide.ENU
.pdf)

7. The Definitive Guide to the ARM Cortex - M0, Joseph Yiu,
(http://www.sciencedirect.com/science/book/9780123854773)

7. Revision History
Table 2. Revision history

Revision Number Date Substantive changes
0 6/2015 Initial release

http://workgroups.oiml.org/tcsc/tc-07/tc-07-sc-04/reference-documentation/D031-e08.pdf
http://www.welmec.org/fileadmin/user_files/publications/WELMEC_07.02_Issue5_SW_2012-03-19.pdf
http://www.welmec.org/fileadmin/user_files/publications/WELMEC_07.02_Issue5_SW_2012-03-19.pdf
http://www.freescale.com/
http://infocenter.arm.com/help/topic/com.arm.doc.dui0662b/DUI0662B_cortex_m0p_r0p1_dgug.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0662b/DUI0662B_cortex_m0p_r0p1_dgug.pdf
http://fsls.co/doc/KINETISMWP
http://supp.iar.com/FilesPublic/UPDINFO/005832/arm/doc/EWARM_DevelopmentGuide.ENU.pdf
http://supp.iar.com/FilesPublic/UPDINFO/005832/arm/doc/EWARM_DevelopmentGuide.ENU.pdf
http://www.sciencedirect.com/science/book/9780123854773

Main project source code

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
Freescale Semiconductor, Inc. 19

Appendix A. Main project source code
#include "drivers.h"

/* LEDs definition */
#define LED1 PIN3 /* PTJ3 */
#define LED2 PIN4 /* PTJ4 */
#define LED3 PIN0 /* PTD0 */
#define BTN2 PIN1 /* PTD1 */
#define JMPADDR 0x00010001
#define TOP_PSP 0x20005000

/***//*!
 * @brief Handles Process stack pointer after reflashing process
 * @details This macro setup process stack to smoothly start new
 non-relevant part of application.
 * @param psp_add adress of top of process stack
 * @param ret_add adress of non-relevant part of application start
 * @note Implemented as an inline macro.
 **/
#define PSP_HANDLE(psp_add,ret_add) { \
 uint32 *p_psp = (uint32 *)(psp_add); \
 SetPSP((psp_add)-32); \
 *(p_psp-1)=0x01000000; \
 *(p_psp-2)=((ret_add)); \
 *(p_psp-3)=((ret_add)); \
 }

/* Imported symbols from linker */
 extern char __ICFEDIT_region_RELEVANT_ROM_start__[];
 extern char __ICFEDIT_region_RELEVANT_ROM_end__[];
 extern char __ICFEDIT_region_NONREL_RAM_start__[];
 extern char __ICFEDIT_region_NONREL_RAM_end__[];
 extern char __ICFEDIT_region_NONREL_ROM_start__[];
 extern char __ICFEDIT_region_NONREL_ROM_end__[];
 extern char __ICFEDIT_region_RELEVANT_RAM_start__[];
 extern char __ICFEDIT_region_RELEVANT_RAM_end__[];
 #define RELEVANT_ROM_START_ADDR __ICFEDIT_region_RELEVANT_ROM_start__
 #define RELEVANT_ROM_END_ADDR __ICFEDIT_region_RELEVANT_ROM_end__
 #define NONREL_RAM_START_ADDR __ICFEDIT_region_NONREL_RAM_start__
 #define NONREL_RAM_END_ADDR __ICFEDIT_region_NONREL_RAM_end__
 #define NONREL_ROM_START_ADDR __ICFEDIT_region_NONREL_ROM_start__
 #define NONREL_ROM_END_ADDR __ICFEDIT_region_NONREL_ROM_end__
 #define RELEVANT_RAM_START_ADDR __ICFEDIT_region_RELEVANT_RAM_start__
 #define RELEVANT_RAM_END_ADDR __ICFEDIT_region_RELEVANT_RAM_end__

/* tmp16 --> adc result register ... stored at specific address */
volatile uint16 tmp16 @ "MY_VAR" ;

uint32 counter=0;

/* Callback functions declaration */
/* Callback functions are considered as relevant code */
static void port_callback(PORT_CALLBACK_SRC src, uint8 pin);

void ADC_ISR(ADC_CALLBACK_TYPE type, register int16 result);

/* Non relevant functions declaration */
#pragma location="MY_FUNCTION"
void NonRelevant (void);
#pragma location="MY_FUNCTION"
void blink (uint16 input);

void main (void)
{
 /* enable clocks to all on chip peripherals */

Main project source code

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
20 Freescale Semiconductor, Inc.

 SIM_Init (SIM_MODULE_ALL_PERIPH_ON_CONFIG);

 /* route core clock to PTF7 for monitoring */
 SIM_SelClkout (CLKOUT_SRC1);
 PORT_Init (PORTF,PORT_MODULE_ALT3_MODE,PIN7);

 /* clock mode 1:1:1, 24MHz */
 SIM_SetClkMode (SYSCLK_MODE0);
 SIM_SetClkDiv (SYSCLK_DIV1);
 FLL_Init (FLL_MODULE_FEE_24MHZ_CONFIG);

 /* Port and GPIO Init */
 PORT_Init (PORTJ, PORT_MODULE_LED_MODE, LED1);
 PORT_Init (PORTJ, PORT_MODULE_LED_MODE, LED2);
 PORT_Init (PORTD, PORT_MODULE_LED_MODE, LED3);
 PORT_Init (PORTD, PORT_MODULE_BUTTON_IRQ_MODE, BTN2);
 GPIO_Init (GPIOJ, GPIO_OUT_LOGIC0_MODE, LED1);
 GPIO_Init (GPIOJ, GPIO_OUT_LOGIC1_MODE, LED2);
 GPIO_Init (GPIOD, GPIO_OUT_LOGIC1_MODE, LED3);
 GPIO_Init (GPIOD, GPIO_INP_MODE, BTN2);

 PORT_InstallCallback (PRI_LVL0,port_callback);

 /* Uart initialization */
 PORT_Init (PORTI, PORT_MODULE_ALT2_MODE, PIN6|PIN7);
 UART_Init (UART2, UART_MODULE_POLLMODE_CONFIG(9600,24e6));

 XBAR_Init (XBAR_MODULE_ANYEDGE_DETECT_CONFIG,
 XBAR_MODULE_NO_EDGE_DETECT_CONFIG,
 XBAR_MODULE_NO_EDGE_DETECT_CONFIG,
 XBAR_MODULE_NO_EDGE_DETECT_CONFIG,
 PRI_LVL0, NULL);
 /* PIT0 overflow triggers ADC CHA */
 XBAR_Path (XBAR_PIT0TIF1, XBAR_ADCTRGCHA);
 /* PIT1 overflow triggers ADC CHB */
 XBAR_Path (XBAR_PIT1TIF1, XBAR_ADCTRGCHB)
 /*PIT initialization */
 PIT_Init (PIT0, CH1, PIT_CH_TMR_EN_CONFIG, 1000000);
 PIT_Init (PIT1, CH1, PIT_CH_TMR_EN_CONFIG, 2400000);

 /* ADC initialization, HW triggered, interrupt enable */
 ADC_Init (ADC_MODULE_16B_HWTRG_XREF_CONFIG,
 HWAVG_16,
 ADC_CH_SE_IRQ_CONFIG(ADC_SE8),
 ADC_CH_SE_IRQ_CONFIG(ADC_SE9),
 ADC_CH_DISABLE_CONFIG,
 ADC_CH_DISABLE_CONFIG,
 PRI_LVL1, ADC_ISR);

 /* Set bus masters attribute to be controlled internally by the core */
 MCM_SetMasterAttr (MCM_CM0_MASTER|MCM_DMA_MASTER,
 MCM_MASTER_EN_PRIV_OR_USER_SECURE_OR_NONSEC,
 TRUE);

 /* Initialize RGD1 = Relevant code; RWX supervisor mode, RX user mode */
 MPU_RgdInit(RGD1,
 MPU_RGD_EN_CM0_PID_OFF_DMA_PID_OFF_CONFIG(MPU_SPVR_RWX, /* CM0+ */
 MPU_USER_RX,
 MPU_SPVR_RWX, /* DMA */
 MPU_USER_RX,
 RELEVANT_ROM_START_ADDR,
 RELEVANT_ROM_END_ADDR));
 /* Initialize RGD2 = Non relevant code; RWX supervisor mode, RWX user mode */
 MPU_RgdInit(RGD2,
 MPU_RGD_EN_CM0_PID_OFF_DMA_PID_OFF_CONFIG(MPU_SPVR_RWX, /* CM0+ */
 MPU_USER_RWX,
 MPU_SPVR_RWX, /* DMA */
 MPU_USER_RWX,
 NONREL_ROM_START_ADDR,
 NONREL_ROM_END_ADDR));

Main project source code

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
Freescale Semiconductor, Inc. 21

 /* Initialize RGD3 = Generally used RAM; RWX supervisor mode, RWX user mode */
 MPU_RgdInit(RGD3,
 MPU_RGD_EN_CM0_PID_OFF_DMA_PID_OFF_CONFIG(MPU_SPVR_RWX,/* CM0+ */
 MPU_USER_RWX,
 MPU_SPVR_RWX, /* DMA */
 MPU_USER_RWX,
 NONREL_RAM_START_ADDR,
 NONREL_RAM_END_ADDR));
 /* Initialize RGD4 = RAM ; RW supervisor mode, R user mode */
 /* In this part of RAM relevant variable is placed, user can read only */
 MPU_RgdInit(RGD4,
 MPU_RGD_EN_CM0_PID_OFF_DMA_PID_OFF_CONFIG(MPU_SPVR_RW, /* CM0+ */
 MPU_USER_R,
 MPU_SPVR_RW, /* DMA */
 MPU_USER_R,
 RELEVANT_RAM_START_ADDR,
 RELEVANT_RAM_END_ADDR));
 /* Initialize RGD5 = MSP and PSP STACK; RW supervisor mode, RW user mode */

 /* Invalidate overlapping RGD0 */
 MPU_DisableRGD0();

 SetPSP(TOP_PSP); /* Set Process Stack Pointer */
 SelPSP(); /* Select Process Stack Pointer */
 EnableInterrupts();
 UserMode(); /* Switch into User mode of execution with using PSP */

 NonRelevant(); /*Jump to execute Non relevant code */

}

void ADC_ISR(ADC_CALLBACK_TYPE type, register int16 result)
{
 if(type == CHA_CALLBACK)
 {
 tmp16 = ADC_Read(CHA);
 }
}

 static void port_callback(PORT_CALLBACK_SRC src, uint8 pin)
 {
 uint8 array[2048];
 uint8 bin ;

 DisableInterrupts();

 FTFA_EraseSector (NONREL_ROM_START_ADDR); /* Erase 2KB flash sector */

 if (UART_RxFull(UART2))
 {
 bin = UART2_D;
 }
 UART_Rd(UART2,array,324); /* Read 324B of data from UART2 */

 FTFA_WriteArray(NONREL_ROM_START_ADDR,array,sizeof(array));/*write into flash */

 PSP_HANDLE(TOP_PSP,JMPADDR);

 EnableInterrupts();
 }

/* Definition of non relevant functions */
#pragma location="MY_FUNCTION"
void NonRelevant(void)
{
 while(1)
 {
 asm("nop");

Dummy project source code

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
22 Freescale Semiconductor, Inc.

 blink(tmp16);
 }
}

#pragma location="MY_FUNCTION"
void blink(uint16 input)
{
 counter += input;
 if(counter > 500000000)
 {

 GPIO_Tgl(GPIOJ,LED1);
 counter=0;
 GPIO_Tgl(GPIOJ,LED2);
 GPIO_Tgl(GPIOD,LED3);
 }
}

Appendix B. Dummy project source code
#include "drivers.h"
#define LED1 PIN3 /* PTJ3 */
#define LED2 PIN4 /* PTJ4 */
#define LED3 PIN0 /* PTD0 */

void entry(void);
void __iar_program_start(void);

/**/
/*Here is the place to declare your non-relevant functions */
void blink(uint16 *p_input);

/**/
/* Define your global variables here : */
int mydata = 5;
int zerodata = 0;
uint32 counter=0;

/**/
/* Function entry is placed at specific place in the flash memory to ensure */
/* correct start of non-relevant part of application. The purpose of */
/* !!! Do not touch this part of code !!! */
#pragma location="NON_RELEVANT"
void entry(void)
{
 // call iar c-startup
 __iar_program_start();
}

/**/
/* Here you can write your non-relevant application: */
/* main is called by iar startup and globals are ready to run c-code */
void main (void)
{
 volatile int unused = 0x35;
 mydata = 2;
 zerodata = 7;
 counter=1;

 unused += mydata;

 while(1)
 {

Dummy project source code

Relevant and Non-Relevant Code Separation with Kinetis M Application Note, Rev. 0, 06/2015
Freescale Semiconductor, Inc. 23

 asm("nop");
 blink((uint16 *)0x20005000);
 }
}
/**/
/* Here is the place for yor non-relevant functions definition: */
void blink(uint16 *p_input)
{
 counter += *p_input;
 if(counter > 500000000)
 {
 GPIO_Tgl(GPIOJ,PIN3);
 counter=0;
 GPIO_Tgl(GPIOJ,PIN4);
 GPIO_Tgl(GPIOD,PIN0);
 }
}

Document Number: AN5141
Rev. 0

06/2015

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.

Freescale, the Freescale and Kinetis logo are registered trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. All other product or service names are the
property of their respective owners. ARM, ARM Powered, and Cortex are registered
trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights
reserved.

© 2015 Freescale Semiconductor, Inc.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	Relevant and Non-Relevant Code Separation with Kinetis M
	Introduction
	2. Basics of software separation
	2.1. Reason to separate the software
	2.2. Legally relevant application code
	2.3. Legally non-relevant application code

	3. Kinetis M microcontroller series
	ARM Cortex-M0+ core
	3.2. DMA Controller Module
	3.3. Miscellaneous Control Module
	3.4. Memory Protection Unit
	3.5. Peripheral Bridge
	3.6. General Purpose Input Output Module
	3.7. Bare Metal Drivers for Kinetis M MCUs

	4. Application development
	4.1. Prepare the concept
	4.1.1. Application concept

	4.2. Developing the application
	4.2.1. Project for the relevant part of software development
	4.2.2. Project for the non-relevant part of software development

	4.3. Reflashing the non-relevant part of the application
	4.3.1. Set up the process stack pointer after reflash

	4.4. Final application

	Summary
	6. References
	7. Revision History
	Main project source code
	Appendix B. Dummy project source code

