
Freescale Semiconductor
Application Note

Document Number: EB651
Rev. 1.2, 10/2006

Contents

Introduction . 1
Modes of Operation . 2

2.1 Input Pulse-Width Measurement (IPWM) 2
2.2 Input Period Measurement (IPM) 4
2.3 Output Pulse-Width Modulation (OPWM) 5
2.4 Output Pulse-Width Modulation and

Frequency Modulation (OPWFM) 7
2.5 Single-Action Output Compare (SAOC) 13
2.6 Double-Action Output Compare (DAOC). 14
2.7 Modulus Counter (MC) . 15
2.8 Output Pulse-Width Modulation

Center Aligned (OPWMC) 18
2.9 Pulse Edge Count (PEC). 20
2.10 Pulse Edge Accumulate (PEA) 20
2.11 Windowed Programmable

Time Accumulation (WPTA) 21
Document Revision History . 23

MPC5500 eMIOS
Avoiding Unexpected Module Operation
by: Bill Terry

MCD 32-Bit Applications Engineering
John West
MCD 32-Bit Systems Engineering
1 Introduction
The enhanced modular input/output subsystem (eMIOS)
found in the MPC5500 family of devices provides
multiple modes for each unified channel (UC), any of
which may be selected depending on the requirements of
the customer application. This bulletin provides a
supplementary reference for programming and using
certain modes.

Special attention is given to possible problems that may
occur if the details of the operation of the module
hardware are not fully understood. Where appropriate,
pseudocode examples illustrate the recommended usage.

In addition to this bulletin, see the reference manual for
the device being used.

1
2

3

© Freescale Semiconductor, Inc., 2006. All rights reserved.

Modes of Operation
2 Modes of Operation
These sections contain information necessary for successful implementation of certain modes of operation.
Generally, there are three types of software action (or inaction) that can cause problems:

• Counter wrap — Updating a register match value to a value less than the current value of the
selected time base, can result in a UC output state that is static until the selected time base rolls
over and the new match value is reached. Depending on the time base selected, this roll-over time
can be as much as the time required for a 24-bit counter to roll over. In this document the time base
roll-over problem is referenced as a counter wrap.

• Non-coherent A and B register values — Reading the A match register on the same clock cycle
that the eMIOS hardware is attempting to update the A match register delays the update, resulting
in the application obtaining incoherent data from the A and B registers.

• Volatile register/time base data — In certain continuous input modes, the application has a finite
amount of time to read a value from the A and/or B registers or the UC internal counter before the
data is lost due to a subsequent update by the eMIOS hardware.

NOTE
The MPC5553 and some later devices offer buffered modes for OPWM,
OPWFM, MC, and OPWMC modes (see Section 2.3, “Output Pulse-Width
Modulation (OPWM),” Section 2.4, “Output Pulse-Width Modulation and
Frequency Modulation (OPWFM),” Section 2.7, “Modulus Counter (MC),”
and Section 2.8, “Output Pulse-Width Modulation Center Aligned
(OPWMC)”). The buffered modes can eliminate some or all of the software
requirements described in the related sections and should be used if
available. Refer to the reference manual for your device.

2.1 Input Pulse-Width Measurement (IPWM)

The IPWM mode allows the measurement of the width of a positive or negative pulse by capturing the
counter value at the leading edge in register B and the counter value at the trailing edge in register A. The
pulse-width is obtained by subtracting B from A.

When an application reads the A register on exactly the same clock cycle as a trailing edge event occurs,
there is contention for access to the A register between the CPU and the eMIOS hardware. The CPU has
higher priority and will access the A register, and the eMIOS update to the A register is delayed. Figure 1
shows the behavior in the error condition.
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor2

Modes of Operation
Figure 1. IPWM Mode

2.1.1 Pseudocode

This section contains a pseudocode example to avoid the error condition shown in Figure 1. The software
monitors the UC flag and performs multiple reads of the A and B registers to ensure coherent values are
obtained.
GetIPWM:

if flag not set
return;

save MSR (machine state register)
disable interrupts
set b1 = B register
set a1 = A register
set a2 = A register
set b2 = B register
clear UC flag

if a1 != a2
if b1 != b2

pulse width = a2 - b2
else

pulse width = a1 - b1
else

pulse width = a2 - b2;
if pulse width < 0 then a rollover occurred

correct pulse width by adding 0x1000000 to

restore old MSR value

Input signal

EDPOL = 1

Simultaneous read of A
register and trailing edge event

BI BII BIIIAI AII

At this point, because the CPU read has higher priority, A holds the AI value
(0x000300), B holds the BII value (0x000400) and the pulse-width calculation is
invalid.

Selected
counter bus 0x000100 0x000200 0x000300 0x000400 0x000500 0x000600

B = 0x000200 B = 0x000400
A = 0x000300A = 0x000300B value read at

the trailing edge.
B value read at
the trailing edge.
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor 3

Modes of Operation
2.2 Input Period Measurement (IPM)

The IPM mode allows the measurement of the period of an input signal by capturing the counter value on
two consecutive rising edges or two consecutive falling edges. When an application reads A on exactly the
same clock cycle as an edge event occurs, there is contention for access to the A register between the CPU
and the eMIOS hardware. The CPU has higher priority and will access the A register, and the eMIOS
update to the A register is delayed. Figure 2 shows the behavior in the error condition.

Figure 2. IPM Mode

2.2.1 Pseudocode

Use the pseudocode example to avoid the error condition shown in Figure 2. The software monitors the
UC flag and performs multiple reads of the A and B registers to ensure coherent values are obtained.
GetIPM:

if flag not set
return;

save MSR (machine state register)
disable interrupts
set b1 = B register
set a1 = A register
set a2 = A register
set b2 = B register
clear UC flag

if a1 != a2
if b1 != b2

pulse width = a2 - b2
else

pulse width = a1 - b1
else

pulse width = a2 - b2;
if pulse width < 0 then a rollover occurred

correct pulse width by adding 0x1000000
restore old MSR value

Input signal

EDPOL = 0

Simultaneous read of
A and trailing edge event

BI = invalid BII = 0x100 BIII=0x300

AI AII

At this point, because the CPU read has higher priority, A holds the AII value
(0x000300), B holds the BIII value (0x000300) and the period calculation is invalid.

Selected
counter bus 0x100 0x200 0x300 0x400 0x500 0x600

AIII

(only 12 LSBs shown)
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor4

Modes of Operation
2.3 Output Pulse-Width Modulation (OPWM)
The output pulse-width mode (OPWM) is typically used to generate a PWM output where the A match
register determines the leading edge, and the B match register determines the trailing edge. OPWM mode
may be configured for immediate update, where A and B values are updated as soon as they are written,
or next period update mode, where the B update value is buffered until the next period.

This mode requires an ordered match to operate properly. That is, an A match must always occur before a
B match can occur. Consequently, a match value written to the A (or B register if using immediate mode)
that is greater than the current counter value will cause a counter-wrap condition (with output either
asserted or unasserted) until the next match occurs. The application software should ensure that any
immediate updates to the A or B register are compared to the current UC counter value and force the
appropriate match if required.

If a next period update for the B register can be allowed by the application, the test for the B update value
against the current counter value is not required. Figure 3 and Figure 4 illustrate the behavior for
immediate updates to leading edge and trailing edge, respectively.

Figure 3. OPWM Mode — Leading Edge Update (Immediate Update)

Selected
Counter Bus 0x000500 0x001000 0x001500 0x002000 0x002500

A = 0x001250

(a) previous pulse

Write 0x001250 to A, but the counter is greater
than this value, so also force an A match.

0x003000

(b) desired new pulse

(c) first pulse generated if updated when

(e) pulse without forced match if updated

B = 0x002500A = 0x001750

B = 0x002500A = 0x001250

counter = 0x001500

(d) second pulse generated after update (c)

Match BMatch A
is the desired pulse.

Write 0x001250 to A, but the counter is greater than this
value so the counter must wrap before

Match B

output is low

EDSEL = x
EDPOL = 1

an A match can occur.

when counter = 0x001500
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor 5

Modes of Operation
Figure 4. OPWM Mode — Trailing Edge Update (Immediate Update)

2.3.1 Pseudocode

This section contains a pseudocode example to avoid the error conditions shown in Figure 3 and Figure 4.
Updates to both registers could be combined in a single function.
update OPWM leading edge:

save MSR (machine state register)
disable interrupts
write the new A Register value
if new A value < current counter value

force an A match
restore MSR

update OPWM trailing edge:
save MSR (machine state register)
disable interrupts
write the new B Register value
if new B value < current counter value

force a B match
restore MSR

Selected
counter bus 0x000500 0x001000 0x001500 0x002000 0x002500

(a) previous pulse

Write 0x002000 to B, but the counter is greater
than this value, so also force a B match.

0x003000

(b) desired new pulse

(c) first pulse generated if updated when

(e) pulse without forced match if updated when

B = 0x002500A = 0x001250

B = 0x002000A = 0x001250

counter = 0x002250

(d) second pulse generated after update (c)

Match BMatch A
is the desired pulse.

Write 0x002000 to B, but the counter is greater than this
value, and B match will not occur. The counter will wrap
before the B match occurs.

output is high

EDSEL = x
EDPOL = 1

Match A

counter = 0x002250
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor6

Modes of Operation
2.4 Output Pulse-Width Modulation and Frequency Modulation
(OPWFM)

The output pulse-width and frequency modulation mode (OPWFM) is typically used to generate a PWM
output that may be dynamically controlled for variable period and pulse-width. In this mode, the A match
register is used to determine the pulse-width, and the B match register controls the period. The UC counter
resets at the end of every period (B match event). OPWFM mode may be configured for immediate update,
where A and B values are updated as soon as they are written, or next period update mode, where the B
update value is buffered until the next period.

This mode requires an ordered match to operate properly. That is, an A match must always occur before a
B match can occur. Consequently, a match value written to the A (or B register if using immediate mode)
that is less than the current counter value will cause a counter-wrap condition (with output either asserted
or unasserted) until the next match occurs (See Figure 5 and Figure 8). The application software should
ensure that immediate updates to the A or B register are compared to the current UC counter value and
force the appropriate match if required.

2.4.1 Pulse-Width Updates

Figure 5 illustrates how the counter-wrap condition can occur with pulse-width updates, and how it can be
avoided.

Figure 5. OPWFM Mode — Asynchronous Pulse-Width Update (Part One)

Selected
Counter Bus 0x000500 0x001000 0x001500 0x002000 0x000000

A = 0x001250

(a) previous pulse

Write 0x001250 to A, but the counter is greater
than this value, so also force an A match.

0x000500

(b) desired new pulse

(c) first pulse generated if updated when

(e) pulse without forced match if updated when

B = 0x002500A = 0x001750

B = 0x002500A = 0x001250

Counter resets on B Match

counter = 0x001500

(d) second pulse generated after update (c)

Match BMatch A
is the desired pulse.

Write 0x001250 to A, but the counter is greater than this
value, and B match can not occur without an A match. The

counter does not reset, and will wrap before an A match.

Match B

output is low

EDSEL = x
EDPOL = 1

counter = 0x001500
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor 7

Modes of Operation
In case an update to the A register requires a forced match, care must also be taken that an impending B
match will not occur before the forced A match has time to complete, resulting in a missed, or very short,
pulse. Figure 6 illustrates how a missed pulse can occur and how it can be avoided.

Figure 6. OPWFM Asynchronous Pulse-Width Update (Part Two)

To avoid the problem illustrated in Figure 6a, the time in UC time base clocks that is required for the code
executing the Force A match to complete must be known. Section 2.4.1.1, “Calculating Code Execution
Time,” contains example code illustrating the software method and the necessary calculations.

B Match B Match

1) At this point software updates the A value and
because it is less than the current UC counter bus
value, a Force A match is also set.

2) Before the force A can take effect, a B match occurs,
resetting the counter and toggling the output pin.

3) The force A can now complete, and immediately
toggles the output pin again, resulting in either a very
short or missed pulse.

A Match A MatchB Match

Delayed force A match

Selected
counter bus 0x000000 0x000000 0x000000

B Match B Match

1) At this point software updates the A value and
because it is less than the current UC counter bus
value, software then checks to see if there is an
impending B match.

2) A B match will occur before the force A match can
complete, so software does not set the force A match
and return. The new A match value becomes valid on
the next period.

3) The next B match occurs

A Match B MatchA Match

Selected
counter bus 0x000000 0x000000

a) Missed pulse due to a delayed force A match

b) Correct force A match procedure

0x000000
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor8

Modes of Operation
2.4.1.1 Calculating Code Execution Time

The subsequent code is an example of how a typical application may asynchronously update the OPWFM
pulse-width.

Example Code1 (UC time base is running at 20MHz, Fsys = 80MHz):

Figure 7. OPWFM Pulse-Width Update — Example Code

In the code example, LOOKAHEAD_BUF represents the time in UC time base clocks required for the force
match A code to complete execution. Line 23 compares the current counter value plus the
LOOKAHEAD_BUF value to the next B match value to see if the force A match will complete before the
next B match occurs. If it will complete, the force A match is issued, but if it will not, the code returns and
the new A match value will be in effect at the next period.

1. This code example is not intended to replace user application code. It is provided only as an illustration. Actual application code
may require additional functionality not included in this code.

1 #define LOOKAHEAD_BUF 8
2
3 update_pulse_width(uint32_t new_A){
4
5 uint32_t temp;
6
7 /* disable irqs if enabled */
8 asm(" wrteei 0");
9
10 /* write the new A value */
11 EMIOS.CH[21].CADR.R = new_A;
12
13 /* read the current counter value */
14 temp = EMIOS.CH[21].CCNTR.R;
15
16 /* if the A match has been missed */
17 if(temp > new_A){
18 /*>>>> start counting system clks here.
19 this is the code that will only run
20 on a possible Force A match. >>>>>>*/
21 /* if too close to upcoming B match */
22 if(temp + LOOKAHEAD_BUF > EMIOS.CH[21].CBDR.R){
23 /* just return */
24 return;
25 }
26 else{
27 /* else force match A */
28 EMIOS.CH[21].CCR.R |= 0x2000;
29 }
30 }
31 /* reenable irqs if they were disabled in line 9*/
32 asm(" wrteei 1");
33 /*>>>> stop counting system clks here >>>>>> */
34 }
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor 9

Modes of Operation
2.4.1.2 Calculating LOOKAHEAD_BUF

LOOKAHEAD_BUF represents the required time for a force match A to be completed. The
LOOKAHEAD_BUF value is not in measured in system clocks, but rather counter ticks for the selected
channel time base. The value depends on how the update function code is written (number of system clocks
required to execute), which compiler is used and how the compiler optimization options are set, and how
the prescalers in the eMIOS are configured. A change in any of the above dependencies requires a
recalculation of the LOOKAHEAD_BUF value.

This formula can be used to calculate the LOOKAHEAD_BUF value, where:
Fsys = system clock frequency
Fchan = UC counter time base frequency
funcClks = number of Fsys clocks for the force match A code to execute (see code example).

Eqn. 1

Referencing the example code in Figure 7, measurement showed that 26 system clocks were required to
execute the else case with the force match A (line19 through line 34). Rounding up to 30 clks to provide
a small safety margin and calculating the LOOKAHEAD_BUF time using Equation 1:

LOOKAHEAD_BUF = (30 * 20 MHz)/ 80 MHz = 7.5

Rounding up to an integer value results in a LOOKAHEAD_BUF of 8.

2.4.1.3 Maximum pulse-width

The size of the LOOKAHEAD_BUF will cause a limit on the maximum pulse duration:

PulseWidth < (B register value – LOOKAHEAD_BUF)

Examples of the effect of the workaround on maximum pulse-width at various PWM frequencies are
shown in Table 1.

.

Table 1. Maximum Pulse-Width — UC Counter Running at 20 MHz

Channel PWM Frequency

Fsys LOOKAHEAD_BUF 100Hz 1kHz 100kHz

80 MHz 8 (B=200,000)
Max PW = 99.996%

(B=20,000)
Max PW = 99.96%

(B=200)
Max PW = 96%

132 MHz 5 (B=1,320,000)
Max PW = 99.9996%

(B=132,000)
Max PW = 99.996%

(B=1320)
Max PW = 99.6%

LOOKAHEAD_BUF funcClks Fchan⋅
Fsys--=
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor10

Modes of Operation
2.4.2 Period Updates

Figure 8 illustrates how the counter-wrap condition can occur with period updates, and how it can be
avoided.

Figure 8. OPWFM Mode — Asynchronous Period Update

If a next period update for the B register can be allowed by the application, the test for the B update value
against the current counter value is not required.

2.4.2.1 Pseudocode

This section contains a pseudocode example to avoid the error conditions shown in Figure 5, Figure 6, and
Figure 8. Updates to both registers may be combined in a single function.
update OPWFM pulse width:

save MSR (machine state register)
disable interrupts
write the new A Register value
if new A value < current counter value

if counter value + buffer > B value
just return

else force an A match
restore MSR

update OPWFM period:
save MSR (machine state register)

Selected
counter bus 0x000500 0x001000 0x001500 0x000000 0x000500

(a) previous pulse

Write 0x002000 to B, but the counter is greater
than this value, so also force a B match (counter resets).

0x001000

(b) desired new pulse

(c) first pulse generated if updated when

(e) pulse without forced match if updated when

B = 0x002500A = 0x001250

B = 0x002000A = 0x001250

Counter resets on
B Match

counter = 0x002250

(d) second pulse generated after update (c)

Match BMatch A
is the desired pulse.

Write 0x002000 to B, but the counter is greater than this
value, and B match will not occur. The counter does not reset
and will wrap before the B match occurs.

output is high

EDSEL = x
EDPOL = 1

Match A

(as in case (d))

counter = 0x002250
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor 11

Modes of Operation
disable interrupts
write the new B Register value
if new B value < current counter value

force a B match
restore MSR

2.4.3 Hazards Associated with 0% Duty Cycle

A UC running OPWFM mode may be configured to generate a 0% duty cycle by setting the A and B
registers to the same value. In this mode, the output of the channel is controlled by the EDPOL bit in the
UC channel control register. If EDPOL = 0, the output will be continuously low, and conversely if EDPOL
= 1 the output will be continuously high. The subsequent sections describe timing hazards that should be
avoided when using OPFWM configured for 0% duty cycle.

2.4.3.1 Setting the A and B Registers to Create 0% Duty Cycle

A potential timing hazard occurs when updating a UC to start 0% duty cycle and a new A and B value are
written (so that A now equals B). Under certain timing sequences associated with the update of the
registers, there may be a final pulse with an indeterminate duty cycle before the UC begins the 0% duty
cycle.

2.4.3.2 Updating the Period During a 0% Duty Cycle

Even though a UC may be running OPWFM in a 0% duty cycle mode, the application may require that the
period of the PWM be updated in preparation for the next time the UC is enabled at some non-zero duty
cycle. If A and B registers are updated asynchronously, while A = B and the channel is in OPWFM mode,
there is a possibility that a spurious pulse of indeterminate length may be generated.

2.4.3.2.1 Pseudocode

There are two methods that avoid the hazards described in Section 2.4.3.1, “Setting the A and B Registers
to Create 0% Duty Cycle,” and Section 2.4.3.2, “Updating the Period During a 0% Duty Cycle.” One may
be used when the UC time base may be cleared and disabled and interrupts or flags are not needed, and
one may be used when the UC must generate interrupts or flags and the internal counter must continue to
increment.

• When the internal counter must continue to increment, and/or flags or interrupts must be generated:
After it is configured for A = B, the channel is returned to OPWFM mode so that matches will
continue to generate flags and/or interrupts. Note that in addition to the force match A, the physical
pin is disconnected from the channel during the update. Also note that the internal counter is
cleared and stopped when GPIO output mode is entered, and then restarts when OPWFM mode is
entered.

set_duty_0(x)
Put UC in GPIO output mode
Set A = B = x
Using SIU1, disconnect UC from output pin
Set UC for OPWFM mode (flags/interrupts are now generated if enabled)

1. SIU is System Integration Unit, See MPC5500 Reference Manual for your device.
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor12

Modes of Operation
Force an A Match
Using SIU, connect UC to output pin

NOTE
When using the SIU to disconnect and re-connect the UC to the output pin,
the pin state while the UC is disconnected is determined by the PCR WPE
and WPS bits and the state of the WKPCFG pin during system boot. The
PCR must be configured so the output assumes the desired state while the
UC is disconnected.

• Pseudocode (when flags or interrupts are not needed)
In this pseudocode example, the output of the UC is set to 0% duty cycle by putting the UC in GPIO
output mode and setting the EDPOL bit to the desired state. The internal counter is cleared and
disabled and no flags and/or interrupts are generated while the UC is in GPIO output mode. After
it is in GPIO output mode, updates may be made to A and B match registers at any time before the
UC is returned to OPWFM mode.

set_duty_0_no_flags(x)
Put UC in GPIO output mode
Set EDPOL to desired output state

2.5 Single-Action Output Compare (SAOC)
This mode allows a UC to be configured to generate a defined output based on the match of a value in the
A register. The selected UC time-base is compared to the A register.

If the software updates the A register to a value that is less than the internal counter value, the counter will
continue counting until it wraps before finally hitting the new register A value. This will result in a stuck
pin state. In most cases, it is preferred to immediately trigger a match event if a value written to match
register A is less than the current counter value.

Figure 9 illustrates the possible output behavior under the conditions discussed.
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor 13

Modes of Operation
Figure 9. SAOC Mode

2.5.1 Pseudocode

This section contains a pseudocode example to perform the updated match value and counter value check
illustrated in Figure 9.
update_saoc:

save MSR (machine state register)
disable interrupts
write new match value to A register
if (new value < the counter value)

force a match now
restore MSR

2.6 Double-Action Output Compare (DAOC)
The double-action output compare (DAOC) mode is used to generate a one-shot pulse, with pulse-width
and timing determined by the A and B match registers. If either of the match registers are updated with a
value less than the current UC counter value, a match will not occur until the counter has wrapped and
again reaches the programmed match value.

Figure 10 illustrates the possible output behavior under the conditions discussed.

Selected
counter bus

A Match

0x001000

0x000500 0x001000 0x001500 0x002000 0x002500

Write 0x001000
to A

EDSEL = 1
EDPOL = x

A value 0x001000 0x001250

(a) previous pulse

Write 0x001250 to A, but the counter is greater
than this value so also force a match.

0x003000

(b) desired new pulse

(c) pulse generated with forced match if

(d) pulse generated without forced match if

updated when counter = 0x001500

updated when counter = 0x001500
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor14

Modes of Operation
Figure 10. DAOC Mode

2.6.1 Pseudocode

The pseudocode example illustrates a method for updating the A registers. A similar routine should be used
to update B or the two updates can be combined into one function.
update DAOC A:

save MSR (machine state register)
disable interrupts
write the new A Register value
if new value < current counter value

force an A match
restore MSR

2.7 Modulus Counter (MC)

The MC mode can be used to provide a time base for a counter bus or as a general-purpose timer. The
internal counter counts up from the current value until it matches the value in register A. Register B is
cleared and is not accessible to the MCU. Up mode or up/down mode may be selected.

If the software updates the A register to a value less than the current value of the internal counter, and the
counter remains counting up, it will continue counting up until it wraps and finally hits the new register A
value. This creates errant behavior in any UC that is using the MC as a time base.

To avoid this problem, the A match flag event should be configured to generate an interrupt that updates
the A register before the next A match occurs. Asynchronous writes to match register A are not

Selected
counter bus

A Match

0x001000

0x000500 0x001000 0x001500 0x002000 0x002500

Write 0x001000
to A

EDPOL = 1

A value 0x001000 0x001250

(a) previous pulse

Write 0x001250 to B, but the counter is greater
than this value so also force a match.

0x003000

(b) desired new pulse

(c) pulse generated with forced match if

(d) pulse generate without forced match if

A = 0x001000 B = 0x002500

A = 0x001000 B = 0x001250

updated when counter = 0x001500

updated when counter = 0x001500
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor 15

Modes of Operation
recommended. If the A value does not need to be updated on a regular basis, the FEN bit may be used to
trigger an update as needed. This avoids the overhead of servicing the interrupt once every MC period.

Figure 11 shows the suggested method of updating to the A register in MC mode. There is limit to how
short the programmed period can be and allow enough time for the interrupt-driven update to occur. The
software designer must ensure that this minimum period time is known and any period selected is greater
than this minimum.
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor16

Modes of Operation
Figure 11. MC Modes

EMIOS_CCNTRn

FLAG
Set Event

MODE[4] = 0 A Match

Time
0x000000

A Match

0xFFFFFF

0x000303
0x000200

Write 0x00200 to A
during interrupt

A = 0x000303

A Match A Match

EMIOS_CCNTRn

FLAG
Set Event

MODE[4] = 1 A Match

Time
0x000000

0xFFFFFF

0x000303
0x000200

Write 0x00200 to A
during interrupt

A = 0x000303

A Match

Up Mode

Up/Down Mode

EMIOS_CCNTRn

FLAG
Set Event

MODE[4] = 0 A Match

Time
0x000000

A Match

0xFFFFFF

0x000303
0x000200

Write 0x00200 to A
UC internal counter = 0x000303

A Match
Up Mode (counter wrap error)

Counter wraps here
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor 17

Modes of Operation
2.7.1 Pseudocode

The pseudocode illustrates a method for updating the A register as needed.
if (update_needed)

load var with new A value
write the FEN bit to enable irq

...
on match A irq:

write var to A register
clear FEN bit to disable further irq
clear UC Flag

2.8 Output Pulse-Width Modulation Center Aligned (OPWMC)
The output pulse-width modulation center aligned (OPWMC) operating mode generates a center-aligned
PWM with dead-time insertion at the leading or trailing edge. The selected counter bus must be running
in up/down mode. Register A contains the ideal duty cycle for the PWM signal and is compared with the
selected time base. Register B contains the dead-time value and is compared with the internal counter.

If an update to the A value is written to a value less than the current counter value, while the counter is
counting up, a counter wrap occurs before the next match can take place. Additionally, if the A register
value is updated to a value greater than the current time base count while the counter is counting down,
the trailing edge will not be generated on the current down count, but rather on the next up count, so a
trailing edge becomes a leading edge. The results of asynchronous writes to the A register can create
erroneous counter behavior.

To avoid these potential problems, the A value (duty cycle) should only be updated during an interrupt at
the trailing edge of the pulse, and must be greater than the current counter value to avoid an early match
see Figure 12). Ensure that the update will complete before the next A match will occur.
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor18

Modes of Operation
Figure 12. OPWMC Mode

2.8.1 Pseudocode
if (update_needed)

load var with new A value
write the FEN bit to enable irq

...
on match A irq:

if var is >= to UC time base count
write var to A register
clear FEN bit to disable further irq
clear UC Flag

else leave irq enabled and return

Selected time base

FLAG
set event

MODE[5] = 0 A Match

Time
0x000000

0xFFFFFF

0x000300
0x000200

Write 0x00300 to register A when
counter is counting down at 0x00250

A = 0x000200

A Match A Match

Desired output

Selected time base

FLAG
set event

MODE[5] = 0 A Match

Time
0x000000

0xFFFFFF

0x000300
0x000200

Write 0x00300 to A during interrupt
(update value must be greater than current counter value)

A = 0x000200

A MatchA Match A Match

Output signal

Errored output

A = 0x000200 A = 0x000300 A = 0x000300

so no match occurs at 0x00200.

OPWMC — Error Example

OPWMC — Preferred Register A Update Method
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor 19

Modes of Operation
2.9 Pulse Edge Count (PEC)

The PEC mode is used to count the number of pulses or edges detected on the input over a desired time
window, as defined by the A and B register values programmed by software. The mode may be set to
collect data continuously, or in a single shot operation.

If continuous operation is selected, the B match flag should be configured to generate an interrupt so that
the service routine will read the count value from the UC counter register before the next A match occurs
(see Figure 13). You must ensure that the interrupt service routine has time to run to completion before the
next A match event. Asynchronous reads of the event counter are not recommended.

Updating the A and/or B registers while the time window is active (after a Match A, but before a Match
B) will cause the time window change to take place immediately and may result in an erroneous time count
in the internal counter. Asynchronous writes to the A and B registers are not recommended, and could be
incorporated into the interrupt handler shown in the pseudocode below.

Figure 13. PEC Continuous Mode

2.9.1 Pseudocode

The pseudocode illustrates an interrupt-based method to ensure valid reading of the edge count value when
in PEC continuous mode as illustrated in Figure 13.
if edge count is needed

write the FEN bit to enable irq on B match
...
on match B irq:

read UC internal counter
optional: update A and B if needed
clear FEN bit to disable further irq
clear UC Flag

2.10 Pulse Edge Accumulate (PEA)
The PEA mode is used to measure a time required for a defined number of events to occur. Like PEC mode,
PEA mode may be configured for continuous or single- shot mode. The measured time is available by
reading the A and B registers, where the B register holds the beginning time at zero event counts, and the
A register holds the ending time when the desired event count is reached.

Selected
counter bus 0x000500 0x001100 0x000500 0x001100

Match A Match B Match A Match B

Internal counter
is counting events.

Internal counter
is counting events.

count resetscount resets count stops count stops

The event count stored in the
internal counter must be read
within this time frame.

A = 0x000500
B = 0x001100

Flag
Generated

Flag
Generated
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor20

Modes of Operation
There are two potential problems when using PEA in continuous mode. If a value is written to the A
register while a measurement is in progress, that is, the internal counter is already counting events, and the
new A register value is less than the current internal counter value, an A match will not occur and the
counter wrap condition will exist. Additionally, reading the A register on exactly the same clock cycle that
the eMIOS hardware is attempting to update it can result in non-coherent A and B register values.

To avoid the counter wrap problem above, asynchronous writes to the A register are not recommended. To
avoid the coherency issue, the methods shown in Section 2.1.1, “Pseudocode,” and Section 2.1.1,
“Pseudocode,” could be used, however with those methods it could be possible to miss a measurement
period while polling the UC flag. Instead, the A match flag event must be configured to generate an
interrupt so that the service routine will read the time base counter values from the A and B registers
coherently before the next A match event occurs. This ensures true continuous mode operation.
Asynchronous reads of the A and B registers are not recommended.

Figure 14. PEA Continuous Mode

2.10.1 Pseudocode

The pseudocode illustrates an interrupt-based method to ensure valid reading of the time base count values
from the A and B registers when in PEA continuous mode. If the input events are occurring at a rapid rate,
there may be a very short time to read A and B values coherently. The software designer must ensure the
interrupt service routine will have time to run to completion before the next A match occurs.
if time count is needed

write the FEN bit to enable irq on A match
...
on match A irq:

read UC A and B registers
(A register could be updated here)
clear FEN bit to disable further irq
clear UC Flag

2.11 Windowed Programmable Time Accumulation (WPTA)

The WPTA mode accumulates the sum of the total high time or low time of an input signal over a
programmable interval (time window) set by the A and B register values. WPTA mode is always

Selected
Counter Bus 0x000500 0x001100 0x00F100 0x00F500

Internal counter
is counting events.

Internal counter
is counting events.

A match

Write A with

Flag
Generated

Flag
Generated

number of events
to measure for time.1

B = 0x000500 A = 0x001100 B = 0x00F100 A = 0x00F500

Next event at input occurs.

A match

1After it is written, the A register value
should not be rewritten asynchronously
during a measurement period.

The time counts are read from the
from the A/B registers within
this time frame.
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor 21

Modes of Operation
continuous, so the B match flag should be configured to generate an interrupt so that a service routine will
read the count value from the UC counter register before the next A match occurs (see Figure 13). The
software designer must ensure the interrupt service routine will have time to run to completion before the
next A match event.

Updating the A and/or B registers while the time window is active (after a Match A, but before a Match
B) will cause the time window change to take place immediately and may result in an erroneous time count
in the internal counter. Asynchronous writes to the A and B registers are not recommended, and could be
incorporated into the interrupt handler shown in the pseudocode below.

Figure 15. WPTA Mode

2.11.1 Pseudocode

This pseudocode illustrates an interrupt based method to ensure valid reading of the UC internal counter
value when in WPTA mode. The interrupt service routine must have time to run to completion before the
next A match event occurs.
if hi or low time count is needed

write the FEN bit to enable irq on B match
...
on match B irq:

read UC internal counter value
optional: update A and B if needed
clear FEN bit to disable further irq
clear UC Flag

Selected
counter bus 0x000500 0x001100 0x000500 0x001100

Match A Match B Match A Match B

Internal counter
is counting high or

count resetscount resets count stops count stops

The high/low time count must be read
from the internal counter within

this time frame.

Flag
generated

Flag
generated

low time.

Input signal

Internal counter
is counting high or

low time.
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor22

Document Revision History
3 Document Revision History
Table 2. Document Revision History

Rev. No. Substantive Change(s) Date

1.0 Initial release. 07-21-05

1.1 Updated OPWFM pulse-width update method to avoid missed pulses. 07-15-06

1.2 Added Section 2.4.3 - OPWFM, 0% duty cycle cases 10-06-06
MPC5500 eMIOS, Rev. 1.2

Freescale Semiconductor 23

Document Number: EB651
Rev. 1.2
10/2006

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 Modes of Operation
	2.1 Input Pulse-Width Measurement (IPWM)
	2.1.1 Pseudocode

	2.2 Input Period Measurement (IPM)
	2.2.1 Pseudocode

	2.3 Output Pulse-Width Modulation (OPWM)
	2.3.1 Pseudocode

	2.4 Output Pulse-Width Modulation and Frequency Modulation (OPWFM)
	2.4.1 Pulse-Width Updates
	2.4.1.1 Calculating Code Execution Time
	2.4.1.2 Calculating LOOKAHEAD_BUF
	2.4.1.3 Maximum pulse-width

	2.4.2 Period Updates
	2.4.2.1 Pseudocode

	2.4.3 Hazards Associated with 0% Duty Cycle
	2.4.3.1 Setting the A and B Registers to Create 0% Duty Cycle
	2.4.3.2 Updating the Period During a 0% Duty Cycle
	2.4.3.2.1 Pseudocode

	2.5 Single-Action Output Compare (SAOC)
	2.5.1 Pseudocode

	2.6 Double-Action Output Compare (DAOC)
	2.6.1 Pseudocode

	2.7 Modulus Counter (MC)
	2.7.1 Pseudocode

	2.8 Output Pulse-Width Modulation Center Aligned (OPWMC)
	2.8.1 Pseudocode

	2.9 Pulse Edge Count (PEC)
	2.9.1 Pseudocode

	2.10 Pulse Edge Accumulate (PEA)
	2.10.1 Pseudocode

	2.11 Windowed Programmable Time Accumulation (WPTA)
	2.11.1 Pseudocode

	3 Document Revision History

