
Freescale Semiconductor
Engineering Bulletin

Document Number: EB758
Rev. 0, 10/2011

Contents

Introduction . 1
MCU header file. 1

2.1 Register and module definition example 2
2.2 Register instantiations . 2
2.3 C code reading . 3
Recommended use cases . 3

3.1 Register initialization . 3
3.2 Status bit clearing . 4
3.3 Bit testing. 5
3.4 Servicing the software watchdog. 6
Conclusion. 6
References . 7
Revision history . 7

Using Qorivva Header Files in C
Avoiding Unexpected Operation
by: Martin Latal

Technical Support, Roznov Czech System Center
1 Introduction
This document describes how to use Qorivva header files
in the C programming language. It highlights the
instructions generated by C compilers and discusses the
related consequences for the MCU’s hardware. This
bulletin also presents typical use cases—such as
peripheral register initialization, interrupt flag clearing,
and software watchdog servicing—and makes
recommendations for effective MCU header file usage.

2 MCU header file
Power Architecture® Qorivva MCU header files use
unions to define MCU memory-mapped registers and to
provide a structure that puts all register definitions for a
particular hardware component together under one
structure name.

All the MCU definitions are defined with the volatile
keyword; thus, they are not a subject of compiler
optimizations either for code size or execution speed.

1
2

3

4
5
6

© Freescale Semiconductor, Inc., 2011. All rights reserved.

MCU header file
2.1 Register and module definition example
An example of a PIT Module Control Register definition and the PIT module structure, as taken from the
MPC5643L.h header file, is shown below. First, a union for the PITMCR register is defined, then a PIT
module structure is defined, and, lastly, the PIT module structure is assigned to the 32-bit address of the
module, as specified by the hardware.

/**/
/* */
/* Module: PIT_RTI */
/* */
/**/

typedef union { /* PIT_RTI_PITMCR - PIT Module Control Register */
vuint32_t R;
struct {

vuint32_t:30;
vuint32_t MDIS:1; /* Module Disable. Disable the module clock */
vuint32_t FRZ:1; /* Freeze. Allows the timers to be stopped when the device enters
debug mode */

} B;
} PIT_RTI_PITMCR_32B_tag;

typedef struct PIT_RTI_struct_tag {

/* PIT_RTI_PITMCR - PIT Module Control Register */
PIT_RTI_PITMCR_32B_tag PITMCR; /* offset: 0x0000 size: 32 bit */

...
... /* there are many other registers in the module */
...

} PIT_RTI_tag;

#define PIT_RTI (*(volatile PIT_RTI_tag *) 0xC3FF0000UL)

2.2 Register instantiations
With C unions defined, there are two different instantiations that could be used in a C program:
<MODULE>.<REGISTER>.R = 0x00000001;
<MODULE>.<REGISTER>.B.<BIT> = 1;

To understand the difference between the two instantiations, we will need to have a look at the instructions
generated, for each, by a C compiler.

2.2.1 Instantiation (.R)
PIR_RTI.PITMCR.R = 0x00000003;

The Freescale CodeWarrior for MPC55xx/MPC56xx compiler generates the following Power
Architecture® VLE instructions:
Using Qorivva Header Files in C, Rev. 0

Freescale Semiconductor2

Recommended use cases
se_li r0, 3 /* load immediate value 3 to r0 */
e_lis r3, 0xC3FF /* load base address of the PIT module to r3 */
se_stw r0, 0(r3) /* store the 32-bit content of r0 to the addr pointed by r3 */

Note the CPU operation is a 32-bit write to a memory location.

2.2.2 Instantiation (.B)
PIT_RTI.PITMCR.B.FRZ = 1;

The Freescale CodeWarrior for MPC55xx/MPC56xx compiler generates the following Power
Architecture VLE instructions:

se_li r4,1 /* load immediate value 1 to r4 */
e_lis r3,0xc3ff /* load base address of the PIT module to r3 */
se_lwz r0,0(r3) /* read value pointed by r3 to r0 */
e_insrwi r0,r4,1,31 /* modify the value in r0 */
se_stw r0,0(r3) /* store r0 value to the address pointed by r3 */

Note that the CPU operation for setting one bit in the register consists of the following sub-operations:

1. Read the register value from a memory to an internal CPU register.

2. Modify the content of the internal CPU register (insert one specific bit and leave other bits of the
target CPU register unchanged).

3. Write the value from the internal CPU register to the memory.

This is a typical read-modify-write sequence. Notice that to set just one bit using the Instantiation (.B), the
C compiler generates five instructions. Compare this approach with the Instantiation (.R), where three
instructions set all the register bits that we need.

2.3 C code reading
We can now see, just from reading the C code, that the second instantiation is actually a read-modify-write
sequence. It should be considered if this is the intended operation. The next section of this document
considers typical use cases and gives recommendations on the usage of the two instantiations.

3 Recommended use cases

3.1 Register initialization
Typically during system startup, a lot of hardware register initializations need to be performed by the CPU
in order to initialize the system for the application.

Recommendation 1

Use Instantiation (.R) to write to a hardware register.
<MODULE>.<REGISTER>.R = #<immediate_value>;
Using Qorivva Header Files in C, Rev. 0

Freescale Semiconductor 3

Recommended use cases
Recommendation 2

To increase readability of the code, use C macros to define bit masks.
#define PIT_RTI_PITMCR_FRZ_MASK = 0x00000001;
#define PIT_RTI_PITMCR_MDIS_MASK = 0x00000002;

PIT_RTI.PITMCR.R = PIT_RTI_PITMCR_FRZ_MASK
 | PIT_RTI_PITMCR_MDIS_MASK;

3.2 Status bit clearing
For this purpose, it is important NOT to use read-modify-write sequences.

NOTE
The term “status register” in this document is used for a memory-mapped
peripheral register that contains one or several “write 1 to clear” (w1c) bits.

The term “status bit” in this document refers to a “write 1 to clear” (w1c) bit
of a status register.

Recommendation 1

DO NOT USE Instantiation (.B)

The rationale for this recommendation is that since the status flag bits are typically cleared by writing a 1
to the bit, a read-modify-write operation could potentially clear other bits in the status register (if they are
set) even if you don’t wish to do so. This kind of unwanted effect is shown in the example below:

Example 1.

/* starting situation: status bit0 and bit1 are set */
var1 = <MODULE>.<REGISTER>.R; /* var1 reads 0x00000003 */

/* clear the status bit0 by writing 1 to it */
<MODULE>.<REGISTER>.B.<STATUS_BIT0> = 1;

/* read the register back */
var1 = <MODULE>.<REGISTER>.R;

/* ! the register reads 0x00000000 ! */
/* the status bit1 is destroyed by the above read-modify-write operation */

The above example uses a status register, which has two least-significant status bits set. Status bit0 and
bit1 are cleared by writing 1 to them. Note that because the read-modify-write sequence is an operation
that inserts one bit and leaves other bits unchanged, the read-modify-write also clears the status bit1. See
Figure 1 for an illustration.
Using Qorivva Header Files in C, Rev. 0

Freescale Semiconductor4

Recommended use cases
Figure 1. Unwanted effect of a read-modify-write operation on a memory-mapped status register.

Recommendation 2

Use Instantiation (.R) to clear a status bit in a hardware register.
<MODULE>.<REGISTER>.R = MODULE_REGISTER_BIT_MASK;

Example—clear the PIT Module Channel 3 TIF status bit
PIR_RTI.CHANNEL[3].TFLG.R = 0x00000001;

Or, even better:
#define PIT_RTI_CHANNEL_TFLG_TIF_MASK 0x00000001
PIT_RTI.CHANNEL[3].TFLG.R = PIT_RTI_CHANNEL_TFLG_TIF_MASK;

3.3 Bit testing
For bit testing, the Instantiation (.B) is useful because of its good readability in the source code.

Recommendation 1

Use Instantiation (.B) for conditional statements in C.
if (1 == <MODULE>.<REGISTER>.B.<BIT>)
{
}

Example—poll the PIT Module Channel 3 TIF status bit
while (0 == PIT_RTI.CHANNEL[3].TFLG.B.TIF)
{

Using Qorivva Header Files in C, Rev. 0

Freescale Semiconductor 5

Conclusion
}

Compare to the same functionality as implemented by the Instantiation (.R)
while (0x00000000 == (PIT_RTI.CHANNEL[3].TFLG.R & 0x00000001))
{
}

In both cases, the code generated by the C compiler will be the same. The only difference is the C source
code.
e_lis r8,0xc3ff /* load base addr of the PIT module to r8 */
e_lwz r0,316(r8) /* load the PIT Channel 3 TFLG register value to r0 */
e_clrlwi r0,r0,31 /* clear all the bits but the lsb (TIF) */
se_cmpi r0,0 /* compare with zero */
se_beq *-14 /* conditional branch */

3.4 Servicing the software watchdog
The Qorivva MPC56xx Software Watchdog Timer (SWT) module requires two keyword writes to the
SWT Module Service Register in order to reset the SWT timeout counter.

Recommendation 1

Use Instantiation (.R) for keyword writes to the SWT Module Service Register.

The rationale for this recommendation is that it is not necessary to generate read accesses to the SWT_SR
register in between the two keyword write accesses. Therefore, a sequence of simple write accesses is
preferred (instead of a sequence of read-modify-write accesses).

#define SWT_SR_KEYWORD1 0xC520
#define SWT_SR_KEYWORD2 0xD928

SWT.SR.R = SWT_SR_KEYWORD1;
SWT.SR.R = SWT_SR_KEYWORD2;

4 Conclusion
It is recommended that users of the Freescale-supplied MPC5xx/MPC55xx/MPC56xx MCU header files
become familiar with the differences between the two instantiations of the MCU registers: Instantiation
(.R) and Instantiation (.B).

For register writes, Instantiation (.R) produces more efficient code (smaller code size, faster startup code
execution).

For status bit clearing, for example in an interrupt service routine, Instantiation (.R) is strongly
recommended, because Instantiation (.B) may cause side effects to the hardware register. Instantiation (.R)
is also more efficient.

Instantiation (.B) is especially useful for conditional statements in C programs (if else, while, for) due to
better readability of the source code.
Using Qorivva Header Files in C, Rev. 0

Freescale Semiconductor6

References
5 References
For further information, please refer to the documents listed in Table 1.

6 Revision history

Table 1. References

Document Title Availability

EREFRM EREF 2.0: A Programmer’s Reference Manual for Freescale Power
Architecture Processors

www.freescale.com

VLEPEM Variable-Length Encoding (VLE) Programming Environments Manual

MPC5643LRM MPC5643L Microcontroller Reference Manual

Table 2. Changes made April 20121

1 No substantive changes were made to the content of this document; therefore the revision number was not incremented.

Section Description

Front page Add SafeAssure branding.

Back page Apply new back page format.
Using Qorivva Header Files in C, Rev. 0

Freescale Semiconductor 7

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support
Document Number: EB758
Rev. 0
10/2011

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,

Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,

QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,

CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC

Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are

trademarks of Freescale Semiconductor, Inc. All other product or service names are

the property of their respective owners. The Power Architecture and Power.org

word marks and the Power and Power.org logos and related marks are

trademarks and service marks licensed by Power.org.

© 2011 Freescale Semiconductor, Inc.

	1 Introduction
	2 MCU header file
	2.1 Register and module definition example
	2.2 Register instantiations
	2.2.1 Instantiation (.R)
	2.2.2 Instantiation (.B)

	2.3 C code reading

	3 Recommended use cases
	3.1 Register initialization
	3.2 Status bit clearing
	3.3 Bit testing
	3.4 Servicing the software watchdog

	4 Conclusion
	5 References
	6 Revision history

