

**Freescale Semiconductor** 

User's Guide

Document Number: KT33903UG Rev. 1.0, 9/2011

# **KIT33903 Evaluation Boards**

Supports KIT33903BD5EVBE (5 Volt)/KIT33903BD3EVBE (3.3 Volt)



Figure 1. KIT33903BD5EVBE/KIT33903BD3EVBE Evaluation Boards

#### Table of Contents

| 1 | Kit Contents / Packing List         | . 2 | <u>,</u> |
|---|-------------------------------------|-----|----------|
| 2 | Important Notice                    | . 3 | 3        |
| 3 | Introduction                        | . 4 | ł        |
| 4 | Required Equipment                  | . 5 | ;        |
| 5 | EVB Setup Configuration             | . 6 | ;        |
| 6 | Hardware Configuration              | . 7 | ,        |
| 7 | Using the EVB.                      | 11  | l        |
| 8 | Schematic Drawing                   | 17  | ,        |
| 9 | Board Layout.                       | 18  | 3        |
| 1 | D Evaluation Board Bill of Material | 20  | )        |
| 1 | 1 References                        | 21  | ĺ        |



© Freescale Semiconductor, Inc., 2011. All rights reserved.



Kit Contents / Packing List

# 1 Kit Contents / Packing List

- KIT33903BD5EVBE or KIT33903BD3EVBE Hardware
- CD33903 (includes SPIGen Software)
- CABLE, RIBBON FLAT 16 PIN ASSY, 0.100" PITCH, 6" LENGTH





# 2 Important Notice

Freescale provides the enclosed product(s) under the following conditions:

This evaluation kit is intended for use of ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY. It is provided as a sample IC pre-soldered to a printed circuit board to make it easier to access inputs, outputs, and supply terminals. This EVB may be used with any development system or other source of I/O signals by simply connecting it to the host MCU or computer board via off-the-shelf cables. This EVB is not a Reference Design and is not intended to represent a final design recommendation for any particular application. Final device in an application will be heavily dependent on proper printed circuit board layout and heat sinking design as well as attention to supply filtering, transient suppression, and I/O signal quality.

The goods provided may not be complete in terms of required design, marketing, and or manufacturing related protective considerations, including product safety measures typically found in the end product incorporating the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. In order to minimize risks associated with the customers applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. For any safety concerns, contact Freescale sales and technical support services.

Should this evaluation kit not meet the specifications indicated in the kit, it may be returned within 30 days from the date of delivery and will be replaced by a new kit.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical", must be validated for each customer application by customer's technical experts.

Freescale does not convey any license under its patent rights nor the rights of others. Freescale products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale product could create a situation where personal injury or death may occur.

Should the Buyer purchase or use Freescale products for any such unintended or unauthorized application, the Buyer shall indemnify and hold Freescale and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale was negligent regarding the design or manufacture of the part.Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2011



# 3 Introduction

This evaluation board allows the user to implement the functionality of the MC33903 product System Basis Chip (SBC).

This EVB includes one I/O test point that can be configured to be pulled up to  $V_{SUP}$  or pulled down to GND through a resistor and indicator LED. It is easily configured via jumper settings. The SBC can also be exercised in debug mode (watchdog re-fresh/monitoring not needed) by simply populating a jumper. Specified resistor pull-downs can be implemented on the DBG and MUX pins via simple jumper configurations. The status of I/O0, 5V\_CAN, SAFE, and VDD can be visually monitored via on-board LEDs. The CAN and LIN Bus signals are provided through terminal block connectors.

An isolated terminal block connector is implemented to provide power to the evaluation board with an external DC power supply.

The evaluation boards are operated through the graphical user interface (GUI) paired up with the SPI dongle board (KITUSBSPIDGLEVME) through the 2x8 pin ribbon cable. Additionally, for added flexibility, the user can implement a custom board with a microcontroller to talk to the SBC via the 16 pin header.

#### 3.1 EVB Features

- Nominal operating supply voltage range of 5.5 to 27 V
- 5.0 V/3.3 V regulator for the MCU with an external PNP ballast transistor to increase current capability
- Multiple CAN Bus termination options supported via socket
- One high/low side I/O (SPI configurable) accessible through a test point
- Status of I/O0 indicated by LED (dependent on jumper configuration)
- Debug mode/watchdog configuration via jumper settings
- · MUX output voltage accessible through a test point and external resistor selectable through a jumper
- I\_WAKE\_I test point to enable a FET and load VDD with current to wake-up the SBC
- LIN1\_T and LIN2\_T test points to monitor I/O voltages (SPI configurable)
- I/O0, 5V\_CAN, SAFE, and VDD status indicated by LED
- 100 mil 2x8 pin standard header connector for SPI communication
- 100 mil 16 pin standard header connector for custom MCU board connection



### 3.2 Device Description/Features

- Protected 5.0 or 3.3 V regulator for the MCU (part number selectable) with optional external PNP usage to increase current capability for MCU
- Fully-protected embedded 5.0 V regulator for the CAN driver
- Extremely low quiescent current in low power modes
- Multiple under-voltage detections to address various MCU specifications and system operation modes (i.e. cranking)
- Multiple wake-up sources in low power modes: CAN or LIN bus, I/O transition, automatic timer, SPI message, and VDD over-current detection
- Voltage, current, and temperature protection with enhanced diagnostics that can be monitored by the system via a MUX output
- ISO11898-5 high speed CAN interface compatibility for baud rates of 40 kb/s to 1.0 Mb/s. LIN 2.1 and J2602 LIN interface compatibility
- Pb-free packaging designated by suffix code EK

# 4 Required Equipment

#### 4.1 Minimum Required Equipment

- Power supply: minimum 5.5 V and 200 mA current
- Any piece of equipment/board that is capable of producing TXD and/or CAN and LIN messages
- KITUSBSPIDGLEVME (USB-to-SPI Kit)
- USB cable
- CABLE, RIBBON FLAT 16 PIN ASSY, 0.100" PITCH, 6" LENGTH
- USB enabled computer with Windows XP or higher
- SPIGen software (Setup.exe)



**EVB Setup Configuration** 

# 5 EVB Setup Configuration



Figure 2. EVB Setup Configuration Diagram



# 6 Hardware Configuration

The KIT33903BD5EVBE/KIT33903BD3EVBE operates with a single 5.5 V minimum power supply and can be driven with the KITUSBSPIDGLEVME along with its GUI. For added flexibility, it is also possible to develop a custom board to drive this evaluation board via the 16 pin standard header.

#### 6.1 Board Implementation

For Standard EVB configuration, set up the jumpers as shown on <u>Figure 3</u>. If the jumper configuration is in accordance with <u>Jumper Connections</u>, on page <u>8</u>, the VDD (D3) and the 5V\_CAN (D4) LEDs must be ON at startup. If CAN communication will be exercised, populate the CAN termination socket (J13) with the necessary components to implement the chosen CAN Termination as shown on <u>Figure 4</u>.



Figure 3. Manual Mode Jumper Settings



### 6.2 Jumper Connections

| Name | Description                                                                                                                                                                                      |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| J15  | VDD Status<br>Jumper closed -> LED indicator enabled                                                                                                                                             |  |  |
| J22  | MUX pin output<br>Jumper closed -> external 2.4 kohm resistor pull-down to GND implemented                                                                                                       |  |  |
| J23  | I/O0 configuration<br>1-2 closed -> 4.7 kohm pull-down resistor to GND and indicator LED implemented<br>2-3 closed -> 15 kohm pull-up resistor to V <sub>SUP</sub> and indicator LED implemented |  |  |
| J27  | DBG configuration<br>Jumper closed -> SBC runs in debug mode (no need to refresh/monitor watchdog)<br>J28 MUST be left open                                                                      |  |  |
| J28  | DBG external pull-down resistor configuration<br>Jumper closed -> 47 kohm pull-down resistor to GND implemented<br>J27 MUST be left open                                                         |  |  |

### 6.3 CAN Termination Configurations



Figure 4. CAN Termination Configurations via J13 Socket



### 6.4 **Power Supply and Input/Output Connectors**

The three pin terminal block (J9) serves as the main power terminal to supply a minimum of 5.5 V to operate the KIT33903BD5EVBE/KIT33903BD3EVBE.

The CAN, LIN1, and LIN2 bus signals are accessible through the three pin terminal blocks J12, CON1, and CON2 respectively.

#### 6.5 Connector J1 – External Control

| Pin # | Pin Name | Description                                                                                                                                                                                                 |  |
|-------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1     | MISO     | SPI data sent to the MCU. When the CS is high, MISO is high-impedance                                                                                                                                       |  |
| 2     | MOSI     | SPI data received by the device                                                                                                                                                                             |  |
| 3     | SCLK     | Clock input for the Serial Peripheral Interface (SPI) of the device                                                                                                                                         |  |
| 4     | CSB      | Chip select pin for the SPI. When the CS is low, the device is selected. In Low Power mode with VDD ON, a transition on CS is a wake-up condition                                                           |  |
| 5     | TXDC_I   | CAN bus transmit data input. Internal pull-up to VDD                                                                                                                                                        |  |
| 6     | RXDC     | CAN bus receive data output                                                                                                                                                                                 |  |
| 7     | I_WAKE_I | Active high input to enable on-board FET to create a 5.0 mA load on VDD                                                                                                                                     |  |
| 8     | N/C      | Not Connected                                                                                                                                                                                               |  |
| 9     | VDD      | 3.3 V/5.0 V output of the main regulators for the Microcontroller supply                                                                                                                                    |  |
| 10    | INTB_I   | This output is asserted low when an enabled interrupt condition occurs. The output is a push-pull structure                                                                                                 |  |
| 11    | RSTB_I   | This is the device reset output whose main function is to reset the MCU. It has an internal pull-up to VDD. The reset input voltage is also monitored in order to detect external reset and safe conditions |  |
| 12    | TXDL1    | LIN1 bus transmit data input. Includes an internal pull-up resistor to VDD                                                                                                                                  |  |
| 13    | RXDL1    | LIN1 bus receive data output                                                                                                                                                                                |  |
| 14    | TXDL2    | LIN bus transmit data input. Includes an internal pull-up resistor to VDD                                                                                                                                   |  |
| 15    | RXDL2    | LIN2 bus receive data output                                                                                                                                                                                |  |
| 16    | GND      | Ground Termination                                                                                                                                                                                          |  |



Hardware Configuration

### 6.6 Connector J2 – SPI Control

| Pin # | Pin Name | Description                                                                                                                                                                                                 |  |
|-------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1     | TXDC     | CAN bus transmit data input. Internal pull-up to VDD                                                                                                                                                        |  |
| 2     | CSB      | Chip select pin for the SPI. When the CS is low, the device is selected. In Low Power mode with VDD ON, a transition on CS is a wake-up condition                                                           |  |
| 3     | INTB     | This output is asserted low when an enabled interrupt condition occurs. The output is a push-pull structure.                                                                                                |  |
| 4     | MISO     | SPI data sent to the MCU. When the CS is high, MISO is high-impedance                                                                                                                                       |  |
| 5     | RSTB     | This is the device reset output whose main function is to reset the MCU. It has an internal pull-up to VDD. The reset input voltage is also monitored in order to detect external reset and safe conditions |  |
| 6     | MOSI     | SPI data received by the device                                                                                                                                                                             |  |
| 7     | NC       | No Connect                                                                                                                                                                                                  |  |
| 8     | SCLK     | Clock input for the Serial Peripheral Interface (SPI) of the device                                                                                                                                         |  |
| 9     | NC       | No Connect                                                                                                                                                                                                  |  |
| 10    | NC       | No Connect                                                                                                                                                                                                  |  |
| 11    | I_WAKE   | Active high input to enable on-board FET to create a 5.0 mA load on VDD                                                                                                                                     |  |
| 12    | NC       | No Connect                                                                                                                                                                                                  |  |
| 13    | NC       | No Connect                                                                                                                                                                                                  |  |
| 14    | NC       | No Connect                                                                                                                                                                                                  |  |
| 15    | NC       | No Connect                                                                                                                                                                                                  |  |
| 16    | GND      | Ground termination                                                                                                                                                                                          |  |

### 6.7 EVB – KITUSBSPIDGLEVME Interconnection

| KIT33903BD5EVB | E/KIT33903BD3EVBE -J2 | USB-to-SPI Dongle Board - I/O PORT |       |  |
|----------------|-----------------------|------------------------------------|-------|--|
| Pin #          | Pin Name              | Pin Name                           | Pin # |  |
| 1              | TXDC                  | CNTL2                              | 2     |  |
| 2              | CSB                   | CSB                                | 1     |  |
| 3              | INTB                  | CNTL1                              | 4     |  |
| 4              | MISO                  | SO                                 | 3     |  |
| 5              | RSTB                  | CNTL0                              | 6     |  |
| 6              | MOSI                  | SI                                 | 5     |  |
| 7              | NC                    | DATA4                              | 8     |  |
| 8              | SCLK                  | SCLK                               | 7     |  |
| 9              | NC                    | DATA3                              | 10    |  |
| 10             | NC                    | CNTL3                              | 9     |  |
| 11             | I_WAKE                | DATA2                              | 12    |  |
| 12             | NC                    | VDD                                | 11    |  |
| 13             | NC                    | DATA1                              | 14    |  |
| 14             | NC                    | REG 3.3V                           | 13    |  |
| 15             | NC                    | DATA0                              | 16    |  |
| 16             | GND                   | GND                                | 15    |  |





# 7 Using the EVB

- 1. Select **Install SPIGen (setup.exe)** from the CD33903 Start page and follow the on-screen installation instructions.
- 2. Connect power supply to the VBAT and GND terminals on the EVB, and build the setup as shown on <u>Figure 2</u>.
- 3. Ensure the voltages provided are in accordance with the device data sheet and the supply currents are sufficient to supply the device.
- 4. To use SPIGen, go to the Windows Start menu > Programs > SPIGen, and click on the SPIGen icon. The SPIGen Generic SPI Generator GUI will appear.
- 5. Go to the **Configure** menu in the upper left hand corner of the GUI and select **Edit Configuration**.
- 6. Select the **Enable 33905 Tab** in the **Part Specific Tabs** section on the lower right hand corner of the GUI and then click **OK** button.
- 7. Click the SBC MC3390x Family tab.
- 8. Select MC33903D in the Device section located on top of the GUI window.

#### 7.1 Using SPIGen with the MC33903 Product

Evaluating all capabilities of the MC33903 product is made easy with the included SPIGen and respective GUI configuration file.



#### 7.1.1 Sending Commands to Read Flags Set on SBC



#### Figure 5. SPIGen Graphical User Interface (Commands and Flags Decoded)

- 1. In the **Registers and Flags** tab, click **Flag High and Low** sub tab to read the device status and clear flags as shown in <u>Figure 5</u>.
- 2. Click any of the read device flag status options.
- 3. Click SEQ to add commands to the Sequential Mode window.



# 7.1.2 Reading and Writing Commands to Exercise SBC and Acquire Its Status



Figure 6. SPIGen Graphical User Interface (Commands and Device Status)

- 1. In the **Registers and Flags** tab, click **Register address high (b7=1)** sub tab to read device status and enabled functionality as shown in Figure 6.
- 2. Initialize the registers by clicking one of the options Init Vreg / Init Wdog / Init Lin-I/O / Init MISC and then click WRITE.
- 3. Click WD Refresh to go to Normal mode and then click Single WD Write Command.
- 4. Click Mode+RM to go to low power mode and then click WRITE.



### 7.1.3 Sending Commands to Acquire the Configuration of the SBC



#### Figure 7. SPIGen Graphical User Interface (Commands and Device Configuration)

- 1. In the Registers and Flags tab, click Register address low (b7=0) sub tab as shown in Figure 7.
- 2. Click any of the read device flag status options.
- 3. Click **SEQ** to add commands to the Sequential Mode window.



### 7.1.4 Sequential Mode



Figure 8. SPIGen Graphical User Interface (Sequential Mode)

- 1. Click **Sequential Mode** tab. This window displays all commands in the Sequential Mode sequence as shown in Figure 8.
- 2. In the Insert Wait text box, enter a wait time in millisecond increments.
- 3. Click **Remove Selected Line** to remove selected lines from the list of commnads.
- 4. Select Loop Enable option to allow loop between selected lines.
- 5. Click Run to activate the loop enabled sequence or single sweep of commands.
- 6. Click Save to store commands sent in a text file.
- 7. Click Load to load list of commands in text file format.
- 8. Click Clear lists to clear all commands from the list.
- 9. Enter a value in the text box and click **Change Value** to change the hexadecimal or the delay time value.



#### 7.1.5 Automated State Diagram Mode



#### Figure 9. SPIGen Graphical User Interface (Automated State Diagram Mode)

- 1. Click **Diagram** tab.
- 2. Select **Normal Mode** option to enable auto read function for continuous device mode status as shown in Figure 9.
- 3. Click Init Mode to initialize selected registers.
- 4. Click Normal Mode to go to normal mode and enable selected registers.
- 5. Click Low Power Vdd OFF/ON to go to low power mode with selected wake ups.



# 8 Schematic Drawing



Figure 10. Schematic Drawing



# 9 Board Layout

### 9.1 Assembly Drawing



Figure 11. Assembly Drawing

### 9.2 Top Side Layer



Figure 12. Top Side Layer



### 9.3 Bottom Side Layer



Figure 13. Bottom Side Layer



**Evaluation Board Bill of Material** 

# **10 Evaluation Board Bill of Material**

| ltem      | Qty | Schematic Label                                                                                                | Value             | Description                                        | Vender                       | Mfg. PN                        |
|-----------|-----|----------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------|------------------------------|--------------------------------|
| 1         | 4   | CON1, CON2, J9, J12                                                                                            | PCB 3WAY 250V/16A | CON 3 TB TH 5MM SN                                 | CAMDEN ELEC-<br>TRONICS LTD  | CTB5000/3                      |
| 2         | 3   | C1, C6, C20                                                                                                    | 0.1 UF            | CAP CER 0.1UF 50V 10% X7R 0805                     | KEMET                        | C0805C104K5RAC                 |
| 3         | 1   | C2                                                                                                             | 10UF              | CAP ALEL 10UF 50V 20% SMT (CASE D)                 | PANASONIC                    | EEE1HA100SP                    |
| 4         | 1   | C5                                                                                                             | 22UF              | CAP ALEL 22UF 16V 20% CASE C<br>SMT                | PANASONIC                    | EEE1CA220SR                    |
| 5         | 2   | C9, C10                                                                                                        | xxpF              |                                                    |                              |                                |
| 6         | 1   | C11                                                                                                            | 1000PF            | CAP CER 1000PF 50V 5% C0G 1206                     | AVX                          | 12065A102JAT2A                 |
| 7         | 6   | C12, C13, C14, C15,<br>C16, C17                                                                                | 56PF              | CAP CER 56PF 50V 5% C0G 1206                       | KEMET                        | C1206C560J5GACT<br>U           |
| 8         | 1   | C21                                                                                                            | 2.2 UF            | CAP ALEL 2.2UF 35V 20% SMT                         | PANASONIC                    | EEEFC1V2R2R                    |
| 9         | 1   | D1                                                                                                             | MBRS140           | DIODE SCH PWR RECT 1A 40V SMB                      | ON SEMICONDUC-<br>TOR        | MBRS140T3G                     |
| 10        | 5   | D3, D4, D8, D9, D10                                                                                            | RED LED           | LED RED SGL 30MA SMT 0805                          | LUMEX                        | SML-LXT0805IW-TR               |
| 11        | 1   | D5                                                                                                             | MMSZ8V2T1G        | DIODE ZNR 0.5W 8.2V SOD123                         | ON SEMICONDUC-<br>TOR        | MMSZ8V2T1G                     |
| 12        | 2   | D13, D14                                                                                                       | 1N4148WS          | DIODE SW 150MA 53V SOD-323                         | DIODES INC                   | 1N4148WS-7-F                   |
| 13        | 1   | J1                                                                                                             | HDR_1X16          | HDR 1X16 TH 100MIL SP 330H AU                      | SAMTEC                       | TSW-116-07-S-S                 |
| 14        | 1   | J2                                                                                                             | HDR_2X8           | HDR 2X8 TH 100MIL CTR 330H AU                      | SAMTEC                       | TSW-108-07-G-D                 |
| 15        | 1   | J13                                                                                                            | DIP14             | SKT DIP 14 PINS TH                                 | 3M                           | ICE-143-S-TG30                 |
| 16        | 4   | J15, J22, J27, J28                                                                                             | HDR 1X2           | HDR 1X2 TH 100MIL SP 330H SN                       | SAMTEC                       | TSW-102-07-T-S                 |
| 17        | 1   | J23                                                                                                            | HDR_1X3           | HDR 1X3 TH 100MIL SP 330H AU                       | SAMTEC                       | HTSW-103-07-S-S                |
| 18        | 1   | Q1                                                                                                             | BCP52-16          | TRAN PNP PWR 1A 60V SOT-223                        | PHILIPS SEMICON-<br>DUCTOR   | BCP52-16                       |
| 19        | 1   | Q3                                                                                                             | MMBF0201NLT1G     | TRAN NMOS PWR 0.3A 20V SOT23                       | ON SEMICONDUC-<br>TOR        | MMBF0201NLT1G                  |
| 20        | 2   | R2, R3                                                                                                         | 2.2K              | RES MF 2.2K 1/8W 5% 0805                           | BOURNS                       | CR0805-JW-222ELF               |
| 21        | 1   | R11                                                                                                            | 330               | RES MF 330 OHM 1/8W 5% 0805                        | VISHAY INTER-<br>TECHNOLOGY  | CRCW0805330RJNE<br>A           |
| 22        | 2   | R12, R13                                                                                                       | 60.4              | RES MF 60.4 1/10W 1% 0603                          | KOA SPEER                    | RK73H1JTTD60R4F                |
| 23        | 1   | R14                                                                                                            | 120               | RES MF 120 OHM 1/8W 5% 0805                        | KOA SPEER                    | RK73B2ATTD121J                 |
| 24        | 3   | R15, R23, R24                                                                                                  | 1K                | RES TF 1.0K 1/8W 5% RC0805                         | BOURNS                       | CR0805JW102E                   |
| 25        | 2   | R16, R18                                                                                                       | 4.7K              | RES MF 4.7K 1/8W 5% 0805                           | VENKEL COMPANY               | CR0805-8W-472JT                |
| 26        | 1   | R17                                                                                                            | 2.4K              | RES MF 2.4K 1/8W 1% 0805                           | YAGEO AMERICA                | 232273462402L                  |
| 27        | 1   | R19                                                                                                            | 15K               | RES MF 15K 1/8W 5% 0805                            | BOURNS                       | CR0805JW153ELF                 |
| 28        | 1   | R26                                                                                                            | 10K               | RES TF 10K 1/8W 5% RC0805                          | BOURNS                       | CR0805JW103E                   |
| 29        | 1   | R25                                                                                                            | 47K               | RES TF 47K 1/8W 5% RC0805                          | BOURNS                       | CR0805JW473E                   |
| 30        | 1   | R27                                                                                                            | 1K                | RES TF 1.00K 1/8W 1% RC0805                        | BOURNS                       | CR0805FX1001E                  |
| 31        | 1   | R28                                                                                                            | 22K               | RES MF 22K 1/8W 5% 0805                            | BOURNS                       | CR0805-JW-223ELF               |
| 32        | 1   | R29                                                                                                            | 3.3K              | RES MF 3.3K 1/8W 5% 0805                           | BOURNS                       | CR0805-JW-332ELF               |
| 33        | 6   | R30, R31, R32, R33,<br>R34, R35                                                                                | 0                 | RES MF ZERO OHM 1/8W 0805                          | BOURNS                       | CR0805-J/-000ELF               |
| 34        | 18  | TP1, TP3, TP4, TP5,<br>TP6, TP7, TP8, TP9,<br>TP10, TP11, TP12,<br>TP13, TP14, TP15,<br>TP16, TP17, TP19, TP21 | TEST POINT BLACK  | TEST POINT PIN .100 X .45 BLACK TH                 | COMPONENTS<br>CORPORATION    | TP-105-01-00                   |
| Freescale | elC |                                                                                                                |                   |                                                    |                              |                                |
| 35        | 1   | U1                                                                                                             | MC33903D          | IC XCVR CAN DUAL LIN 40-1000KBPS<br>4.4-40V SOIC54 | FREESCALE SEMI-<br>CONDUCTOR | MCZ33903BD3EK<br>MCZ33903BD5EK |

Freescale does not assume liability, endorse or warrant components from external manufacturers that are referenced in circuit drawings or tables. While Freescale offers component recommendations in this configuration, it is the customer's responsibility to validate their applications.



# **11 References**

N

Following are URLs where you can obtain information on other Freescale products and application solutions:

| Description                                  | URL                                                                             |
|----------------------------------------------|---------------------------------------------------------------------------------|
| Data Sheet                                   | www.freescale.com/files/analog/doc/data_sheet/MC33903_4_5.pdf                   |
| Fact Sheet                                   | www.freescale.com/files/analog/doc/fact_sheet/MC33903_4_5FS.pdf                 |
| Application Note                             | www.freescale.com/files/analog/doc/app_note/AN3865.pdf                          |
| Errata                                       | http://www.freescale.com/files/analog/doc/errata/MC33903_4_5ER.pdf              |
| SPIGen                                       | www.freescale.com/files/soft_dev_tools/software/device_drivers/SPI-<br>Gen.html |
| Freescale's Web Site                         | www.freescale.com                                                               |
| Freescale's Analog Web Site                  | www.freescale.com/analog                                                        |
| Freescale's Power Management Web Site        | www.freescale.com/powermanagement                                               |
| Freescale's Automotive Applications Web Site | www.freescale.com/automotive                                                    |

#### How to Reach Us:

#### Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

#### **USA/Europe or Locations Not Listed:**

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

#### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

#### Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

#### For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.



Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2011. All rights reserved.

KT33903UG Rev. 1.0 9/2011